We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Software Identifies Brain Hemorrhage

By MedImaging International staff writers
Posted on 07 Nov 2017
ParallelDots Inc. (Lewes, Delaware, USA), an artificial intelligence (AI) company that develops algorithms, has trained a deep neural network to act as a second pair of eyes for radiologists by automatically detecting brain hemorrhage from computed tomography (CT) scans.

ParallelDots Inc. focuses on building a proprietary AI stack, which can solve real-world problems end to end, including proprietary datasets, proprietary algorithms and deployment mechanisms. The company’s Data Tagging engine churns out annotated data from various domains (social media, healthcare, and retail), while its Data Science team develops novel algorithms, which can use this data and deliver AI agents that can be deployed in the real world.

The company’s model, named Recurrent Attention DenseNet (RADnet), emulates the procedure followed by radiologists for diagnosis of brain hemorrhage by analyzing 3D CT scans and sifts through 2D cross-sectional slices while paying close attention to potential hemorrhagic regions. It utilizes 3D context from neighboring slices to improve predictions at each slice and subsequently, aggregates the slice-level predictions to provide diagnosis at the CT level.

When benchmarked against independent analysis performed by three senior radiologists for 77 brain CTs, RADnet demonstrated 81.82% hemorrhage prediction accuracy at the CT level that was comparable to the radiologists. What was particularly remarkable was that RADnet achieved higher recall than two of the three radiologists.

ParallelDots Inc. has acknowledged that very high sensitivity is required for deploying automated emergency diagnostic tools and that there are several other equally severe brain conditions which RADnet is unaware of. However, the company envisions a future where similar emergency diagnostic tools will be used to detect different anomalies from brain CT scans and believes that RADnet also demonstrates potential to be deployed as an emergency diagnosis tool.

Related Links:
ParallelDots

40/80-Slice CT System
uCT 528
Digital Color Doppler Ultrasound System
MS22Plus
Breast Localization System
MAMMOREP LOOP
Mammography System (Analog)
MAM VENUS

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.