We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Unsupervised AI Model Accurately Predicts COVID-19 Patient's Survival Based on Chest CT Exams

By MedImaging International staff writers
Posted on 08 Aug 2021
Print article
Illustration
Illustration
An "unsupervised" artificial intelligence (AI) model, or one trained without image annotations, can accurately predict the survival of COVID-19 patients on the basis of their chest computed tomography (CT) exams.

Researchers from Massachusetts General Hospital (Boston, MA, USA) have shown that the performance of their pix2surv algorithm based on CT images significantly outperformed those of existing laboratory tests and image-based visual and quantitative predictors in estimating the disease progression and mortality of COVID-19 patients. Thus, pix2surv offers a promising approach for performing image-based prognostic predictions.

Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients with COVID-19 are largely limited to semi-automated schemes with manually designed features and supervised learning, and the survival analysis is largely limited to logistic regression. To resolve this problem, the researchers developed a weakly unsupervised conditional generative adversarial network, called pix2surv, which can be trained to estimate the time-to-event information for survival analysis directly from the chest CT images of a patient.

pix2surv enables the estimation of the distribution of the survival time directly from the chest CT images of patients. The model avoids the technical limitations of the previous image-based COVID-19 predictors, because the use of a fully automated conditional GAN makes it possible to train a complete image-based end-to-end survival analysis model for producing the time-to-event distribution directly from input chest CT images without an explicit segmentation or feature extraction efforts. Also, because of the use of weakly unsupervised learning, the annotation effort is reduced to the pairing of input training CT images with the corresponding observed survival time of the patient.

In their study the researchers showed that the prognostic performance of pix2surv based on chest CT images compares favorably with those of currently available laboratory tests and existing image-based visual and quantitative predictors in the estimation of the disease progression and mortality of COVID-19 patients. They also showed that the time-to-event information calculated by pix2surv based on chest CT images enables stratification of the patients into low- and high-risk groups by a wider margin than those of the other predictors. Thus, pix2surv offers a promising approach for performing image-based prognostic prediction for the management of COVID-19 patients.

Related Links:
Portable Color Doppler Ultrasound Scanner
DCU10
Silver Member
X-Ray QA Meter
T3 AD Pro
Ultrasound Table
Women’s Ultrasound EA Table
X-Ray Illuminator
X-Ray Viewbox Illuminators

Print article

Channels

Radiography

view channel
Image: AI can identify “mammographically-visible” types of interval cancers earlier by flagging them at the time of screening (Photo courtesy of ScreenPoint Medical)

AI Improves Early Detection of Interval Breast Cancers

Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more

MRI

view channel
Image: An MRI scan can reveal a heart’s functional age (Photo courtesy of 123RF)

New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes

Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.