We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Software Accurately Detects Lung Cancers on X-Rays and Cuts Unnecessary Chest CT Scans by 30%

By MedImaging International staff writers
Posted on 06 Aug 2021
Print article
Illustration
Illustration
A recent study has shown that a deep learning-based artificial intelligence (AI) algorithm can improve the performance of readers in detecting lung cancers on chest radiographs.

According to the second joint study conducted by Massachusetts General Hospital (Boston, MA, USA) and Lunit Inc. (Seoul, Korea), AI had 28% sensitivity benefit for radiology residents, helping them properly recommend CT exams for potential lung cancer patients, and 30% specificity benefit for radiologists in lung cancer detection, reducing unnecessary CT exams. The joint research team has previously focused on validating the accuracy of AI, and proved that Lunit INSIGHT CXR, an AI software for analyzing chest X-rays, can accurately detect malignant pulmonary nodules, which can cause lung cancer. In this consecutive study, the team focused on whether AI can affect the performance of medical professionals in finding lung cancers.

For the study, 519 images of cancer-positive and cancer-negative patients were selected from the National Lung Screening Trial (NLST). Eight readers, including three radiology residents and five board-certified radiologists, participated in the reading. By comparing the analysis of the readers and Lunit INSIGHT CXR, the result showed that AI could lead to more efficient and precise diagnosis for both doctors and patients. With AI, radiology residents were able to recommend 28% more chest CT examinations for patients who may have potential risk of lung cancer. Also, radiologists recommended about 30% lesser proportion of unnecessary chest CT examinations in cancer-negative patients.

"The use of AI could help to detect pulmonary nodules accurately with chest X-rays, as well as reduce the need for unnecessary chest CT exams in some patients," said Mannudeep K. Kalra, MD, a radiologist at the MGH and Co-investigator on the study. "This finding can benefit patients by enabling them to avoid unneeded radiation exposure, and it can benefit the healthcare system by preventing certain medical costs."

"Chest X-ray is the firsthand diagnostic tool to detect lung cancer, but it has limitations as it is a compressed 2D rendering of 3D human structures," said Brandon Suh, CEO of Lunit. "An accurate analysis through Lunit INSIGHT CXR can help medical professionals provide diagnosis to patients with increased efficiency - preventing potential cancer at an early stage, while saving time and cost for those who do not need a further examination."

Related Links:

Massachusetts General Hospital
Lunit Inc.


Gold Supplier
Conductive Gel
Tensive
Gold Supplier
128 Slice CT Scanner
Supria 128
New
Lead Apron
Standard Regular Vest
New
CT System
Aquilion Lightning 80

Print article
Sun Nuclear -    Mirion

Channels

Ultrasound

view channel
Image: The new device targets ultrasound waves to precise spots in the brain (Photo courtesy of WUSTL)

Anatomically Precise Ultrasound-Based Technique to Enable Noninvasive Biopsies for Brain Tumors

The blood-brain barrier serves as a protective wall, keeping the brain safe from harmful elements like viruses and toxins in the blood. This makes it challenging for doctors to obtain molecular and genetic... Read more

Nuclear Medicine

view channel
Image: Imaging entire body instead of only the primary cancer site can provide a total estimate of HER2 expression (Photo courtesy of 123RF)

Whole-Body PET/CT Predicts Response to HER2-Targeted Therapy in Metastatic Breast Cancer Patients

Around 20% of women diagnosed with breast cancer show overexpression of human epidermal growth factor receptor 2 (HER2), making it a key therapy target for new as well as recurring cases.... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The partnership combines best-in-class AI-powered technologies for musculoskeletal imaging workflows (Photo courtesy of ImageBiopsy Lab)

AI-Powered Technologies to Aid Interpretation of X-Ray and MRI Images for Improved Disease Diagnosis

Musculoskeletal (MSK) conditions impact more people worldwide than issues related to the circulatory or respiratory systems. Even so, diagnostic procedures for these conditions often still lean on outdated... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.