We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New AI Platform to Analyze NHS Radiological Scans

By MedImaging International staff writers
Posted on 30 May 2019
Print article
Image: The DGX-2 two petaFLOPS supercomputer system (Photo courtesy of Nvidia).
Image: The DGX-2 two petaFLOPS supercomputer system (Photo courtesy of Nvidia).
A novel artificial intelligence (AI) system intended for the United Kingdom National Health Service (NHS; London) will automate nationwide radiological interpretation across multiple clinical pathways, including oncology, cardiology, and neurology.

The AI project is a joint effort of Nvidia (Santa Clara, CA, USA) and King’s College London (KCL; United Kingdom), which will build and train the AI platform to interpret radiological scans for hospitals across the UK. The technology would thus free up overworked specialists and could also lead to breakthroughs across the medical imaging landscape, from determining the root cause of various cancers to helping classify specific neurological impairments and identifying optimal treatment plans.

At the core of the first stage of the project is a graphics processing unit (GPU)-powered two-petaflops Nvidia DGX-2 supercomputer, combining 16 interconnected GPUs, which Nvidia claims is currently the world's most powerful AI system. The project will also employ the Nvidia Clara AI toolkit, an open-source NiftyNet image-analysis neural-network, and a host of supplemental imaging technologies from existing NHS partners such as Kheiron Medical (London, UK), Mirada (London, UK) and Scan.

“Together with King's College London, we're working to push the envelope in AI for healthcare,” said Jaap Zuiderveld, vice president for Europe, the Middle East and Africa (EMEA) at Nvidia. “DGX-2 systems with the Nvidia Clara platform will enable the project to scale and drive breakthroughs in radiology [and] ultimately help improve patient outcomes within the NHS.”

“This center marks a significant chapter in the future of AI-enabled NHS hospitals, and the infrastructure is an essential part of building new AI tools which will benefit patients and the healthcare system as a whole,” said Professor Sebastien Ourselin, PhD, head of the School of Biomedical Engineering & Imaging Sciences at KCL. “The Nvidia DGX-2 AI system's large memory and massive computing power make it possible for us to tackle training of large, 3D datasets in minutes instead of days while keeping the data secure on the premises of the hospital.”

As security and governance of data in clinical environments is of the highest importance, and since AI models within the project will be built from patient data from across the entire UK-wide NHS system, the center has decided to employ federated learning, which keeps data within its own, secure domain, while allowing algorithms to be developed at multiple sites using data located at hospitals around the UK. The federated learning approach is designed to ensure a robust and secure system that more than complies with government data-privacy requirements.

Gold Supplier
Premium Ultrasound Scanner
ARIETTA 850
New
Data Management Platform
Track-it
New
X-Ray Image Acquisition Software
dicomPACS DX-R
New
Breast Biopsy Device
CYTOMAT

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Ultrasound

view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.