We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

New AI Platform to Analyze NHS Radiological Scans

By MedImaging International staff writers
Posted on 30 May 2019
Print article
Image: The DGX-2 two petaFLOPS supercomputer system (Photo courtesy of Nvidia).
Image: The DGX-2 two petaFLOPS supercomputer system (Photo courtesy of Nvidia).
A novel artificial intelligence (AI) system intended for the United Kingdom National Health Service (NHS; London) will automate nationwide radiological interpretation across multiple clinical pathways, including oncology, cardiology, and neurology.

The AI project is a joint effort of Nvidia (Santa Clara, CA, USA) and King’s College London (KCL; United Kingdom), which will build and train the AI platform to interpret radiological scans for hospitals across the UK. The technology would thus free up overworked specialists and could also lead to breakthroughs across the medical imaging landscape, from determining the root cause of various cancers to helping classify specific neurological impairments and identifying optimal treatment plans.

At the core of the first stage of the project is a graphics processing unit (GPU)-powered two-petaflops Nvidia DGX-2 supercomputer, combining 16 interconnected GPUs, which Nvidia claims is currently the world's most powerful AI system. The project will also employ the Nvidia Clara AI toolkit, an open-source NiftyNet image-analysis neural-network, and a host of supplemental imaging technologies from existing NHS partners such as Kheiron Medical (London, UK), Mirada (London, UK) and Scan.

“Together with King's College London, we're working to push the envelope in AI for healthcare,” said Jaap Zuiderveld, vice president for Europe, the Middle East and Africa (EMEA) at Nvidia. “DGX-2 systems with the Nvidia Clara platform will enable the project to scale and drive breakthroughs in radiology [and] ultimately help improve patient outcomes within the NHS.”

“This center marks a significant chapter in the future of AI-enabled NHS hospitals, and the infrastructure is an essential part of building new AI tools which will benefit patients and the healthcare system as a whole,” said Professor Sebastien Ourselin, PhD, head of the School of Biomedical Engineering & Imaging Sciences at KCL. “The Nvidia DGX-2 AI system's large memory and massive computing power make it possible for us to tackle training of large, 3D datasets in minutes instead of days while keeping the data secure on the premises of the hospital.”

As security and governance of data in clinical environments is of the highest importance, and since AI models within the project will be built from patient data from across the entire UK-wide NHS system, the center has decided to employ federated learning, which keeps data within its own, secure domain, while allowing algorithms to be developed at multiple sites using data located at hospitals around the UK. The federated learning approach is designed to ensure a robust and secure system that more than complies with government data-privacy requirements.


Print article
CIRS -  MIRION
Radcal

Channels

MRI

view channel
Image: Hyperpolarized MRI technology reveals changes in heart muscle’s sugar metabolism after heart attack (Photo courtesy of ETH Zurich)

MRI Technology to Visualize Metabolic Processes in Real Time Could Improve Heart Disease Diagnosis

Magnetic resonance imaging (MRI) has become an indispensable part of medicine. It allows unique insights into the body and diagnosis of various diseases. However, current MRI technology has its limitations:... Read more

Ultrasound

view channel
Image: A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without surgery (Photo courtesy of Tel Aviv University)

Ultrasound Combined With Nanobubbles Enables Removal of Tumors Without Surgery

The prevalent method of cancer treatment is surgical removal of the tumor, in combination with complementary treatments such as chemotherapy and immunotherapy. Therapeutic ultrasound to destroy the cancerous... Read more

General/Advanced Imaging

view channel
Image: AI tool predicts reduced blood flow to the heart (Photo courtesy of Pexels)

AI Tool Uses CT Scans to Identify Patients at Risk of Reduced Blood Flow to the Heart

Blockages of the coronary arteries typically occur due to the buildup of fatty plaques. This may restrict blood flow to the heart, causing chest pain, heart attacks, or even death. Identifying which arteries... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.