We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Researchers Train Model to Identify Breast Lesions

By MedImaging International staff writers
Posted on 24 Oct 2017
Print article
Image: The scatterplot shows the machine learning model score compared to a random number in the independent test set (Photo courtesy of RSNA).
Image: The scatterplot shows the machine learning model score compared to a random number in the independent test set (Photo courtesy of RSNA).
Researchers have trained a machine-learning tool to identify high-risk, biopsy-diagnosed breast cancer lesions that are unlikely to become cancerous, and do not require immediate surgery.

The model was 97% accurate in its predictions and could help reduce unnecessary breast cancer surgeries by 33%. High-risk lesions have a higher risk of developing into cancer, but many such lesions could be safely monitored using imaging, without requiring surgery.

The study was published online in the October 2017 issue of the journal Radiology by researchers from Massachusetts Institute of Technology (MIT; Boston, MA, USA), and Massachusetts General Hospital (MGH; Boston, MA, USA). The machine-learning tool enabled the researchers to find those high-risk lesions that have a low risk of being upgraded to cancer.

The model took account of patient age, lesion histology, and other standard risk factors, but also included keywords from biopsy pathology reports. The researchers trained the model using patients with biopsy-proven high-risk lesions. After training the model on two-thirds of the high-risk lesions, the researchers found that they were able to identify 97% of the lesions that were upgraded to cancer. The researchers also found that by using the model they could help avoid almost one-third of the surgeries of benign tumors.

The author of the study, radiologist Manisha Bahl, MD, MPH, from MGH and Harvard Medical School, said, "There are different types of high-risk lesions. Most institutions recommend surgical excision for high-risk lesions such as atypical ductal hyperplasia, for which the risk of upgrade to cancer is about 20%. For other types of high-risk lesions, the risk of upgrade varies quite a bit in the literature, and patient management, including the decision about whether to remove or survey the lesion, varies across practices. Our goal is to apply the tool in clinical settings to help make more informed decisions as to which patients will be surveilled and which will go on to surgery."

Related Links:
Massachusetts Institute of Technology
Massachusetts General Hospital

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Motorized DR System I-Arm
Alizé BRS
POC Ultrasound System
Acclarix AX3
Hand-Held Bidirectional Vascular Doppler
Bidop 7

Print article



view channel
Image: MRI scan showing the fetus and placental compartments (Photo courtesy of WUSTL)

New MRI Method Automatically Detects Placental Health during Pregnancy

Early monitoring of the placenta can improve detection and prevention of pregnancy complications, such as preterm birth, fetal growth disorders and preeclampsia. Currently, standard MRI analysis methods... Read more


view channel
Image: The new Clarius MSK AI model speeds up diagnosis and treatment of musculoskeletal injuries (Photo courtesy of Clarius)

Handheld MSK Ultrasound Scanner Uses AI to Automatically Identify and Measure Tendons in Foot, Ankle and Knee

An artificial intelligence (AI) application for musculoskeletal (MSK) imaging that works with handheld point-of-care ultrasound devices automatically identifies, highlights, and measures tendon structures... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: CZT gamma detector for SPECT imaging (Photo courtesy of Kromek)

Low-Dose Molecular Breast Imaging (MBI) Could Improve Cancer Detection in Dense Breast Tissue

Traditional mammography is often less able to clearly image tumors due to the density of the breast tissue. Molecular breast imaging (MBI) technology uses a radioactive tracer that ‘lights up’ areas of... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.