We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Study Shows How Deep Learning and AI Diagnose TB

By MedImaging International staff writers
Posted on 24 Apr 2017
Print article
Image: A chest X-Ray of a patient with active TB, and an X-Ray with a heat map overlay showing some of the results of the AI analysis (Photo courtesy of RSNA).
Image: A chest X-Ray of a patient with active TB, and an X-Ray with a heat map overlay showing some of the results of the AI analysis (Photo courtesy of RSNA).
Researchers have found that they can use an artificial intelligence technique called deep learning to identify cases of tuberculosis on chest X-Ray exams with a net accuracy rate of 96%.

According to the World Health Organization (WHO) around 1.8 million people died from tuberculosis (TB) in 2016. A simple chest X-Ray exam can help radiologists identify the disease, but many TB patients live in remote areas without access to expert radiologists who can interpret the images, and diagnose the disease.

The study was carried out by researchers at the Thomas Jefferson University Hospital who trained artificial intelligence models to identify TB on chest X-rays. The goal of the research was to help screen and evaluate patients in TB-prevalent areas lacking access to radiologists. The study was published in the April 25, 2017, online issue of the journal Radiology.

The researchers used 1,007 X-Ray exams of patients with and without active TB for the study. The multiple TB-positive and TB-negative X-Ray datasets were used to train two different Deep Convolutional Neural Network (DCNN) models called AlexNet and GoogLeNet. The researchers found that the best performing Artificial Intelligence (AI) model was when both AlexNet and GoogLeNet were used together, resulting in a net accuracy of 96%.

Co-author of the study, Paras Lakhani, MD at TJUH, said, “There is a tremendous interest in artificial intelligence, both inside and outside the field of medicine. An artificial intelligence solution that could interpret radiographs for presence of TB in a cost-effective way could expand the reach of early identification and treatment in developing nations. The relatively high accuracy of the deep learning models is exciting. The applicability for TB is important because it’s a condition for which we have treatment options. It’s a problem that can be solved. We hope to prospectively apply this in a real world environment. An artificial intelligence solution using chest imaging can play a big role in tackling TB.”

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Elevating X-Ray Table
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50
Vertical Bucky

Print article



view channel
Image: MRI scan showing the fetus and placental compartments (Photo courtesy of WUSTL)

New MRI Method Automatically Detects Placental Health during Pregnancy

Early monitoring of the placenta can improve detection and prevention of pregnancy complications, such as preterm birth, fetal growth disorders and preeclampsia. Currently, standard MRI analysis methods... Read more


view channel
Image: The new Clarius MSK AI model speeds up diagnosis and treatment of musculoskeletal injuries (Photo courtesy of Clarius)

Handheld MSK Ultrasound Scanner Uses AI to Automatically Identify and Measure Tendons in Foot, Ankle and Knee

An artificial intelligence (AI) application for musculoskeletal (MSK) imaging that works with handheld point-of-care ultrasound devices automatically identifies, highlights, and measures tendon structures... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: CZT gamma detector for SPECT imaging (Photo courtesy of Kromek)

Low-Dose Molecular Breast Imaging (MBI) Could Improve Cancer Detection in Dense Breast Tissue

Traditional mammography is often less able to clearly image tumors due to the density of the breast tissue. Molecular breast imaging (MBI) technology uses a radioactive tracer that ‘lights up’ areas of... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.