We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Cancer Detection Improved with New Image Analysis Technique

By MedImaging International staff writers
Posted on 02 Mar 2015
Print article
Researchers developed a novel image-analysis technique designed to improve breast cancer detection and diagnosis.

The goal of the team was to develop a new quantitative image analysis technique to improve prediction of cancer risk, or cancer prognosis, and help find more effective cancer screening and treatment strategies. To this end, the team built image processing algorithms that could analyze multiple digital X-ray images, and build statistical data learning-based prediction models, to generate quantitative image markers.

The research team was led by Dr. Bin Zheng, electrical and computer engineering professor at the University of Oklahoma, College of Engineering (Norman, OK, USA).

Breast cancer screening, for example includes risk factors such as age, family cancer history, lifestyle, breast density, and results from tests for common susceptible cancer gene mutations. These risk factors are reviewed and are used to cancer risk assessment models. These models are then applied in epidemiology studies.

Using the new models, only a small number of those women in the near-term high-risk category would be screened more frequently. Those with average or lower near-term risk of developing cancer would be screened less frequently, allowing radiologists to focus on women in the high-risk group. A smaller number of women screened annually also reduce the risk of false-positive recalls in those women with low near-term cancer risk.

Prof. Bin Zheng, said, “Our preliminary study results demonstrate that our new near-term risk prediction model based on a computer-aided detection scheme of four-view mammograms yielded a substantially higher discriminatory power than other existing known risk factors to predict near-term cancer risk.”

Related Links:

University of Oklahoma, College of Engineering 


Ultrasound Table
Women’s Ultrasound EA Table
Multi-Use Ultrasound Table
Clinton
New
Medical Radiographic X-Ray Machine
TR30N HF
New
Breast Localization System
MAMMOREP LOOP

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.