We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App

Artificial Intelligence Tool Enhances Usability of Medical Images

By MedImaging International staff writers
Posted on 14 Jun 2024
Print article
Image: The denoised image is less noisy and the defect is more detectable and visually clearer with DEMIST (Photo courtesy of Abhinav Jha/WUSTL)
Image: The denoised image is less noisy and the defect is more detectable and visually clearer with DEMIST (Photo courtesy of Abhinav Jha/WUSTL)

Doctors use myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images to evaluate blood flow to the heart muscle. To capture these images, patients are administered a dose of radioactive tracer and must remain still for up to 15 minutes during the scanning process. Reducing the dose of the tracer or the duration of the scan would be advantageous for patients, as it would streamline the procedure and reduce imaging costs. However, such reductions can also compromise the image quality, particularly in terms of visualizing cardiac defects, which is the primary clinical purpose of these images. Now, a deep-learning-based image denoising method has been developed that could enhance the detection of myocardial defects in low-count SPECT scans.

The tool developed by researchers at Washington University in St. Louis (St. Louis, MO, USA) for denoising MPI SPECT images demonstrates the potential to improve performance on clinical tasks. Drawing on insights into the human visual system, the team devised a deep-learning-based strategy tailored for denoising low-count MPI SPECT images, effectively improving their quality. The tool, named DEMIST, uses a deep learning framework to selectively refine MPI SPECT images, ensuring the preservation of essential features critical for detection tasks.

The effectiveness of DEMIST was evaluated using anonymized clinical data from 338 patients who underwent MPI procedures on two different scanners. The results demonstrated that DEMIST outperformed both the original low-dose scans and a widely-used task-agnostic denoising method in detecting cardiac defects. The denoised images by DEMIST significantly improved the detection of cardiac defects according to a model observer. This improvement was consistent across various patient demographics, including both male and female patients, and across different types of cardiac defects. It was also effective with data obtained from two distinct scanners. Further mathematical analysis confirmed that DEMIST effectively retained features vital for detection tasks, thereby boosting observer performance.

“These results provide evidence for future clinical evaluation of DEMIST's potential to denoise MPI SPECT images,” said biomedical engineer Abhinav Jha who led the research at WUSTL. “I am excited about these findings since we are seeing that AI may have the potential to enhance the usability of medical images. By providing the possibility to reduce radiation dose and acquisition time, DEMIST offers possibilities to enhance the accuracy and efficiency of detecting myocardial perfusion defects, ultimately benefiting patient care and treatment outcomes.”

Related Links:

Gold Member
Solid State Kv/Dose Multi-Sensor
Ultrasound System
Voluson Signature 18
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
Ultrasound System

Print article



view channel
Image: The pathways in the brain highlighted are those most affected by concussion (Photo courtesy of Benjamin Hacker et al)

AI Model Diagnoses Traumatic Brain Injury from MRI Scans With 99% Accuracy

A concussion is a type of traumatic brain injury that may lead to temporary disruptions in brain function. Occurring from incidents such as sports injuries, whiplash, or a simple bump to the head, many... Read more


view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Calantic Digital Solutions is an orchestrated suite of AI radiology solutions that aims to transform radiology (Photo courtesy of Bayer)

Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions

Imaging data constitutes approximately 90% of all medical data, with the volume of such data continuously expanding, thereby significantly increasing the workload for radiologists amid existing resource limitations.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.