We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI System Combines CT Imaging with Clinical and Genetic Data for Early Lung Cancer Detection

By MedImaging International staff writers
Posted on 20 Feb 2024
Print article
Image: A new study suggests CT imaging with automated AI system can predict EGFR genotype (Photo courtesy of 123RF)
Image: A new study suggests CT imaging with automated AI system can predict EGFR genotype (Photo courtesy of 123RF)

Lung carcinoma prognosis has evolved significantly with the discovery of molecular targets and their corresponding treatments. Specifically, mutations in the Epidermal Growth Factor Receptor (EGFR) gene, found in lung carcinoma, serve as key targets for specialized therapies. However, in countries with limited resources like India, advanced testing methods such as next-generation sequencing remain inaccessible for widespread use. Challenges also include obtaining sufficient tissue from lung core biopsies and dealing with the inherent intratumoral heterogeneity that complicates the identification of suitable tumor tissues. Now, researchers have demonstrated that an AI-based system can automatically detect and analyze lung nodule features from CT images, predicting the likelihood of EGFR mutations. This innovation aids oncologists and patients in resource-limited settings by providing near-optimal care and guiding appropriate treatment decisions.

Previous studies leveraging AI with CT imaging have shown promise in categorizing and analyzing lung nodules without incurring additional costs. However, most of these methods have focused solely on nodule detection in CT images. Moreover, while AI has been used to extract comprehensive lung information for predicting EGFR genotype and evaluating responses to targeted lung cancer therapy, such efforts have predominantly been centered on White and Chinese populations. With a primary focus on the Indian population, researchers led by the Rajiv Gandhi Cancer Institute and Research Centre (New Delhi, India) set out to develop an AI-based strategy that could not only detect but also characterize lung nodules, indicating the EGFR mutational status in lung carcinoma patients. This would help triage patients requiring extensive molecular profiling of the EGFR-driver gene.

The team created a fully automated AI-based Predictive System (AIPS) using machine learning (ML) and deep learning (DL) algorithms. This system can detect lung nodule features from CT images and assess the probability of an EGFR mutation, thus eliminating the need for time-consuming image annotation by radiologists and complex feature engineering. In addition to incorporating EGFR gene sequencing and CT imaging data from 2277 lung carcinoma patients across three cohorts in India and a White population cohort from TCIA, the researchers used the LIDC-IDRI cohort to train the AIPS-Nodule (AIPS-N) model. This model automatically detects and characterizes lung nodules. The AIPS-N model's combination with clinical factors in the AIPS-Mutation (AIPS-M) model was evaluated for its effectiveness in predicting the EGFR genotype, achieving area under the curve (AUC) values ranging from 0.587 to 0.910. The AIPS-N successfully detected nodules with an average AP50 of 70.19% and predicted scores for five lung nodule properties. This research suggests that CT imaging combined with an automated lung-nodule analysis AI system can non-invasively and cost-effectively predict EGFR genotype, identifying patients with EGFR mutations.

Related Links:
Rajiv Gandhi Cancer Institute and Research Centre

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Color LCD
U156W
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
Compact C-Arm
Arcovis DRF-C S21

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.