We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Powered Algorithm Catches Unruptured Brain Aneurysms Missed in Routine CT Scans

By MedImaging International staff writers
Posted on 18 Sep 2023
Image: An AI-powered algorithm can help detect unruptured brain aneurysms missed in routine clinical care (Photo courtesy of 123RF)
Image: An AI-powered algorithm can help detect unruptured brain aneurysms missed in routine clinical care (Photo courtesy of 123RF)

Each year, a significant number of people worldwide suffer from ruptured aneurysms in the brain. Often, these aneurysms are discovered by chance during brain scans conducted for unrelated issues. Now, a machine learning algorithm has been found to better identify these unruptured aneurysms that need medical attention but may be overlooked during routine brain scans.

Researchers from UTHealth Houston (Houston, TX, USA) studied a prospectively maintained registry that involved eight approved stroke centers. They focused on patients who had undergone CT angiography scans to evaluate potential stroke risks. A machine learning algorithm called Viz Aneurysm from Viz.ai (San Francisco, CA, USA), analyzed these scans to identify unruptured cerebral aneurysms that were at least four millimeters large. Out of 1,191 scans reviewed during the study, the algorithm flagged 50 as possibly showing an unruptured aneurysm. From those, 36 genuine aneurysms were detected from 31 CT angiograms, including four cases of multiple aneurysms.

Of these 36 confirmed aneurysms, 67% had not been previously marked for further evaluation, and they had a median size of 4.4 millimeters. Five of these untracked aneurysms were larger than seven millimeters and carried an average 2.4% risk of rupture over the next five years. To put it simply, only a third of the unruptured aneurysms that likely needed further investigation had been initially flagged for follow-up during routine clinical care. The most common location for these aneurysms was the internal carotid artery, accounting for 46% of cases. Researchers believe that such machine learning algorithms can enhance the detection rate of unruptured cerebral aneurysms by flagging CT angiograms suspected of aneurysm. Such algorithms can also help streamline follow-up and communication among healthcare providers through the same platform.

“We have already seen the tremendous benefit that machine learning can bring to patients suffering from acute stroke,” said senior author Sunil A. Sheth, MD, associate professor at UTHealth Houston. “In this study, we see a similar possibility for substantially improving the way in which we identify, counsel, and help patients with brain aneurysms.”

Related Links:
UTHealth Houston 
Viz.ai

Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Diagnostic Ultrasound System
DC-80A
Medical Radiographic X-Ray Machine
TR30N HF
New
Half Apron
Demi

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.