We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI-Powered Algorithm Catches Unruptured Brain Aneurysms Missed in Routine CT Scans

By MedImaging International staff writers
Posted on 18 Sep 2023
Print article
Image: An AI-powered algorithm can help detect unruptured brain aneurysms missed in routine clinical care (Photo courtesy of 123RF)
Image: An AI-powered algorithm can help detect unruptured brain aneurysms missed in routine clinical care (Photo courtesy of 123RF)

Each year, a significant number of people worldwide suffer from ruptured aneurysms in the brain. Often, these aneurysms are discovered by chance during brain scans conducted for unrelated issues. Now, a machine learning algorithm has been found to better identify these unruptured aneurysms that need medical attention but may be overlooked during routine brain scans.

Researchers from UTHealth Houston (Houston, TX, USA) studied a prospectively maintained registry that involved eight approved stroke centers. They focused on patients who had undergone CT angiography scans to evaluate potential stroke risks. A machine learning algorithm called Viz Aneurysm from Viz.ai (San Francisco, CA, USA), analyzed these scans to identify unruptured cerebral aneurysms that were at least four millimeters large. Out of 1,191 scans reviewed during the study, the algorithm flagged 50 as possibly showing an unruptured aneurysm. From those, 36 genuine aneurysms were detected from 31 CT angiograms, including four cases of multiple aneurysms.

Of these 36 confirmed aneurysms, 67% had not been previously marked for further evaluation, and they had a median size of 4.4 millimeters. Five of these untracked aneurysms were larger than seven millimeters and carried an average 2.4% risk of rupture over the next five years. To put it simply, only a third of the unruptured aneurysms that likely needed further investigation had been initially flagged for follow-up during routine clinical care. The most common location for these aneurysms was the internal carotid artery, accounting for 46% of cases. Researchers believe that such machine learning algorithms can enhance the detection rate of unruptured cerebral aneurysms by flagging CT angiograms suspected of aneurysm. Such algorithms can also help streamline follow-up and communication among healthcare providers through the same platform.

“We have already seen the tremendous benefit that machine learning can bring to patients suffering from acute stroke,” said senior author Sunil A. Sheth, MD, associate professor at UTHealth Houston. “In this study, we see a similar possibility for substantially improving the way in which we identify, counsel, and help patients with brain aneurysms.”

Related Links:
UTHealth Houston 

Gold Member
Solid State Kv/Dose Multi-Sensor
Computed Tomography (CT) Scanner
Aquilion Serve SP
Ultrasound Software
UltraExtend NX
Brachytherapy Planning System
Oncentra Brachy

Print article



view channel
Image: The study supports annual screening beginning at age 40 as the best way to diagnose cancer early (Photo courtesy of 123RF)

Annual Mammography Beginning At 40 Cuts Breast Cancer Mortality By 42%

Breast cancer remains a leading cause of cancer-related deaths among women in the United States. Although studies have shown that regular mammography screenings can cut breast cancer fatalities by 40%,... Read more


view channel
Image: Researchers have created a new MRI brain extraction tool for neonates (Photo courtesy of 123RF)

Deep Learning Algorithm Performs Automatic Segmentation of Neonatal Brains from MR Images

Magnetic Resonance Imaging (MRI) is a vital tool in medical diagnostics, particularly because of its high-resolution images and superior soft tissue contrast, which make it crucial for brain evaluations.... Read more


view channel
Mindray`s comprehensive range of ultrasound machines include the Resona I9 (photo courtesy of Mindray)

Non-Invasive Ultrasound Technique Helps Identify Life-Changing Complications after Neck Surgery

Nasopharyngoscopy is an intrusive diagnostic medical procedure that involves the examination of the internal structures of the nose and throat (nasopharynx) using an endoscope inserted through the patient’s nose.... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.