We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Tool Diagnoses Muscle Wasting in Head and Neck Cancer Patients from CT Scans

By MedImaging International staff writers
Posted on 18 Aug 2023
Print article
Image: AI-driven muscle mass assessment could improve care for head and neck cancer patients (Photo courtesy of Freepik)
Image: AI-driven muscle mass assessment could improve care for head and neck cancer patients (Photo courtesy of Freepik)

Head and neck cancers present a significant treatment challenge, often requiring a combination of surgery, radiation, and chemotherapy. While these treatments can be effective in curing the disease, they are also notorious for their severe side effects. A key concern is the development of sarcopenia, or muscle wasting. This condition can lead to difficulties in eating and drinking, resulting in malnutrition and a multitude of problems, including the possible need for a feeding tube, reduced quality of life, and even earlier death. Detecting sarcopenia early is essential but traditionally has been a labor-intensive process. Doctors usually assess muscle mass through computed tomography (CT) scans, either of the abdomen or the neck. Since CT scans of the neck are common in patients with head and neck cancer, they offer an opportunity for early identification and intervention for sarcopenia. However, diagnosing sarcopenia from these scans requires a specialized expert who can differentiate muscle from other tissue, a process that can take up to 10 minutes for each scan.

Researchers from Dana-Farber Cancer Institute (Boston, MA, USA) have developed an artificial intelligence (AI) tool that can quickly and accurately diagnose sarcopenia using CT scans of the neck in patients with head and neck cancer. The application of AI streamlines what is otherwise a painstaking process prone to human error, performing the assessment in just 0.15 seconds. The development process began by training the AI model using clinical records and CT scans from 420 patients. An expert manually assessed muscle mass for each patient based on the scans and calculated a skeletal muscle index (SMI) score. This data was used to train the deep learning model, and a second dataset was utilized to validate the model's performance. Impressively, the model made clinically acceptable assessments 96.2% of the time.

The tool could have broad clinical applications. Current methods often rely on body mass index (BMI) as an indicator of health decline related to treatment. However, when the team compared the effectiveness of BMI and SMI in predicting poor outcomes, they found that SMI was a superior predictor, suggesting it could become a crucial clinical tool. The introduction of AI-based assessment means that sarcopenia could be monitored frequently throughout a patient's treatment. Early detection might prompt interventions such as nutritional support, medication, or physical therapy, potentially improving overall outcomes. It could also influence treatment decisions at the outset, as understanding a patient's muscle mass might inform a tailored, perhaps gentler, treatment strategy.

“Sarcopenia is an indicator that the patient is not doing well. A real-time tool that tells us when a patient is losing muscle mass would trigger us to intervene and do something supportive to help,” said lead author Benjamin Kann, MD, a radiation oncologist in the Department of Radiation Oncology at Dana-Farber Brigham Cancer Center.

Related Links:
Dana-Farber Cancer Institute 

Gold Supplier
128 Slice CT Scanner
Supria 128
Gold Supplier
Conductive Gel
Tensive
New
Interventional Robot
ANT-X
New
PACS Workstation
CHILI WebViewer NG

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

AI Model Analyzes Tumors Removed Surgically in Real-Time

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed... Read more

MRI

view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more

Ultrasound

view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.