We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




PET Imaging Can Predict Survival in Patients with Brain Tumors

By MedImaging International staff writers
Posted on 18 Aug 2023
Print article
Image: PET imaging can help clinicians predict survival outcomes for patients with brain tumors (Photo courtesy of Freepik)
Image: PET imaging can help clinicians predict survival outcomes for patients with brain tumors (Photo courtesy of Freepik)

Glioblastoma is the most commonly occurring malignant primary brain tumor in adults and mostly has a grim prognosis. One protein connected to glioblastoma is Translocator protein (TSPO), which is expressed in the tumor. While PET radiotracers have been developed to bind to TSPO and can shed light on the characteristics of the tumor, there has been a lack of studies that demonstrate the clinical benefit of this approach. Now, a new study has found that PET imaging can help predict survival outcomes for patients suffering from this type of brain tumor.

Researchers at LMU University Hospital (Munich, Germany) have found a correlation between TSPO-PET imaging and reduced survival in patients newly diagnosed with glioblastoma who are undergoing radiotherapy. Their investigation focused on the relationships between TSPO-PET imaging using the F-18 GE-180 radiotracer and survival outcomes in a group of 45 patients with histologically confirmed isocitrate dehydrogenase (IDH) wild-type glioblastoma. The results were revealing: the median progression-free survival was 8.1 months, and overall survival was 10.8 months. At the time of the last follow-up after treatment, nearly all the patients (95.6%) had shown tumor progression, and the vast majority (88.9%) had passed away.

The research found that the level of tumoral uptake of F-18 GE-180 on the PET imaging had a significant connection to overall survival. Specifically, a high maximum standard uptake value (SUVmax) was linked to a considerably shorter overall survival time—8.3 months as opposed to 17.8 months. When compared with those patients exhibiting low tumoral uptake on TSPO-PET, patients with SUVmax higher than 2.2 faced a substantially elevated risk of death. The multivariate analysis found the hazard ratio to be 2.2. Glioblastoma continues to have limited successful treatment options, creating an urgent need for exploring new targets for both diagnostics and therapy. This study, however, offers a glimmer of hope, indicating that TSPO-PET imaging during the course of radiotherapy might serve as a potent tool in assessing treatment response.

"TSPO-PET seems to add prognostic insights beyond established clinical parameters and might serve as an informative tool as clinicians make survival predictions," noted the researchers.

Related Links:
LMU University Hospital 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Radiation Therapy Treatment Software Application
Elekta ONE
New
Color Doppler Ultrasound System
DCU50
New
Portable Digital X-Ray System
Acuity PDR

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.