We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI-Based Biomarker Uses CT Scans to Predict Immunotherapy Response for Lung Cancer Patients

By MedImaging International staff writers
Posted on 06 Jan 2023
Print article
Image: New AI-based biomarker can help predict immunotherapy response for patients with lung cancer (Photo courtesy of Emory University)
Image: New AI-based biomarker can help predict immunotherapy response for patients with lung cancer (Photo courtesy of Emory University)

Immunotherapy is often the first line of treatment for patients with non-small cell lung cancer, which represents 84% of all lung cancers, according to the American Cancer Society. However, most patients don’t achieve durable results from immune checkpoint inhibitor (ICI) therapies, a type of immunotherapy. In a retrospective study, researchers have now discovered a new artificial intelligence (AI)-derived biomarker that uses routine imaging scans to help predict which patients with lung cancer will respond to immunotherapy. The findings not only offer guidance for patients and their physicians making treatment decisions, but can also curtail the financial burden associated with immunotherapy.

The new biomarker, quantitative vessel tortuosity (QVT), was discovered by a team of researchers from several health care systems and universities, including Emory University (Atlanta, GA, USA), and can influence tumor behavior and therapeutic resistance. Tumors appropriate the body’s machinery for building new blood vessels and redirect as much blood as possible to the tumors so they can grow faster and spread throughout the body. Compared to normal blood vessels, tumor-associated vasculature is chaotically arranged and twisted.

The researchers used AI tools to evaluate different aspects of QVT biomarkers in more than 500 cases of patients with non-small cell lung cancer before and after they were treated with ICI therapies. The researchers discovered that the tumor vasculature of patients who do not respond to ICI therapies is more twisted compared to those who do respond. They hypothesize that blood vessel twistedness causes antitumor cells to accumulate at the tumor site but fail to efficiently infiltrate the tumor, diminishing the effectiveness of immunotherapy. In future work, the researchers will seek to validate QVT biomarkers in prospective clinical trials.

“Immunotherapy only tends to benefit approximately 30% of patients. With the high expense of treatments and a 70% failure rate, we have to find better ways to predict and monitor responses to therapy,” says Anant Madabhushi, PhD, study author and professor in the Wallace H. Coulter Department of Biomedical Engineering at Emory University School of Medicine and Georgia Institute of Technology College of Engineering, and member of the Cancer Immunology research program at Winship Cancer Institute of Emory University. “When making decisions on who to treat and how to treat them, clinicians really need interpretable features. Vessel tortuosity is a novel radiomics method that uses an interpretable and intuitive AI approach to evaluate whether the tumor is responding to therapy even before more obvious changes like tumor size become apparent.”

Related Links:
Emory University

New
Gold Supplier
Conductive Gel
Tensive
New
SPECT/CT Scanner
AnyScan SC
New
High-Frequency X-Ray Generator
Battery X-Ray Generator
New
Multipurpose Radiography System
NeuVision 460

Print article
FIME - Informa
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)

Sustainable Solar Cell Material Could Revolutionize Medical Imaging

The use of X-rays for internal body imaging has dramatically changed non-invasive medical diagnostics. Yet, the high dose of X-rays required for these imaging techniques, due to the poor performance of... Read more

MRI

view channel
Image: An international, multi-institutional project aims to develop a radically new MRI scanner that is compact and transportable (Photo courtesy of U of M Medical School)

Compact and Portable MRI Scanner to Expand Existing Imaging Capabilities and Accessibility

Magnetic Resonance Imaging (MRI) technology which provides detailed images of the human brain is instrumental in understanding brain functions and diagnosing medical conditions. MRI has become indispensable... Read more

Ultrasound

view channel
Image: A new study has shown the value of endoscopic ultrasound in NSCLC (Photo courtesy of Freepik)

Endoscopic Ultrasound Can Provide Value in NSCLC, Finds Study

The usefulness of confirmatory mediastinoscopy following tumor-negative results on endoscopic ultrasound still remains debatable among researchers. This procedure is often employed for mediastinal staging... Read more

Nuclear Medicine

view channel
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

New Imaging Method Superior for Diagnosing Multiple Types of Cancer

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.