We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Dual-Energy CT Surpasses Pulmonary Function Tests and Conventional CT in Assessing Postoperative Lung Volume

By MedImaging International staff writers
Posted on 03 Nov 2022
Image: DECT assesses postoperative lung volume and perfusion changes (Photo courtesy of ARRS, AJR)
Image: DECT assesses postoperative lung volume and perfusion changes (Photo courtesy of ARRS, AJR)

Pulmonary function tests (PFTs) and perfusion scintigraphy have limited utility for evaluating postoperative changes in regional pulmonary function after lung cancer resection surgery. Now, new research has found that metrics derived from dual-energy CT (DECT) can provide insight on physiologic changes after lung cancer surgical resection, beyond the information provided by PFTs and conventional CT.

In the study, researchers at the Yonsei University College of Medicine (Seoul, Korea) examined 81 patients (38 men, 43 women; mean age, 60.5 years; lobectomy in 43, limited resection in 38) awaiting lung cancer resection surgery between March 2019 and February 2020. Patients underwent thoracic DECT and PFT evaluation preoperatively and 6 months postoperatively. Pulmonary lobes were segmented, and lobar volume and perfusion ratios - both relative to whole-lung values - were computed. Perfusion measures reflected DECT-derived iodine content. Patients then completed six-month postoperative quality-of-life questionnaires.

Ultimately, lung perfusion ratio increases were greater after lobectomy than limited resection for ipsi-lateral non-resected lobe(s) (39.9±20.7% vs. 22.8±17.8%) and contra-lateral lung (20.9±9.4% vs. 4.3±5.6%). After right lower lobe lobectomy, the largest postoperative increases in lung volume ratio occurred in the right middle lobe (44.1±21.0%), whereas the largest postoperative increase in lung perfusion ratio occurred in the left lower lobe (53.9±8.6%). Noting some postoperative changes in DECT-derived volume and perfusion parameters showed a correlation with patient-reported postoperative quality-of-life scores, “the findings indicate a potential role of DECT-derived metrics for understanding the variable physiologic impacts of lung cancer resection surgeries,” the authors concluded.

Related Links:
Yonsei University College of Medicine

Ultrasound Table
Women’s Ultrasound EA Table
Radiation Safety Barrier
RayShield Intensi-Barrier
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Mammography System (Analog)
MAM VENUS

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.