We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

Most Radiologists Want to Adopt AI Tools into Clinical Practice, Finds Study

By MedImaging International staff writers
Posted on 17 Aug 2022
Print article
Image: Radiologists would prefer AI-based decision support during screening mammography interpretation (Photo courtesy of Pexels)
Image: Radiologists would prefer AI-based decision support during screening mammography interpretation (Photo courtesy of Pexels)

Artificial intelligence (AI) may improve cancer detection and risk prediction during mammography screening, but radiologists’ preferences regarding its characteristics and implementation are unknown. Now, a new study into radiologists’ preferences pertaining to the use of AI as a support tool for cancer detection and risk prediction during mammography screening has found that up to 60% of radiologists intend to adopt AI tools into clinical practice in the near future.

Through qualitative interviews with radiologists, investigators at the University of Washington (Seattle, WA, USA) and Seattle Cancer Care Alliance (Seattle, WA, USA) identified five primary attributes for AI-based breast cancer detection and four for breast cancer risk prediction. The team developed a discrete choice experiment (DCE) based on these attributes and invited 150 U.S.-based radiologists to participate. Each respondent made eight choices for each tool between three alternatives: two hypothetical AI-based tools versus screening without AI. The investigators analyzed sample-wide preferences using random parameters logit models and identified subgroups with latent class models. The respondents (N=66; 44% response rate) were from six diverse practice settings across eight states.

The investigators found that the radiologists were more interested in AI for cancer detection when sensitivity and specificity were balanced (94% sensitivity with <25% of examinations marked) and AI mark-up appeared at the end of the hanging protocol after radiologists complete their independent review. For AI-based risk prediction, the radiologists preferred AI models using both mammography images and clinical data. Overall, 46-60% intended to adopt any of the AI tools presented in the study; 26-33% approached AI enthusiastically but were deterred if the features did not align with their preferences. Based on these findings, the investigators concluded that although most radiologists want to use AI-based decision support, short-term uptake may be maximized by implementing tools that meet the preferences of dissuadable users.

Related Links:
University of Washington 
Seattle Cancer Care Alliance 

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Pocket Fetal Doppler
Data Management Platform
Mobile Radiography System
NeuVision 550M (Plus)

Print article



view channel
Researchers used AI to triage patients with chest pain (Photo courtesy of Pexels)

First Deep Learning AI Model Triages Patients with Chest Pain Using X-Rays

Acute chest pain syndrome can involve tightness, burning or other discomfort in the chest or a severe pain that spreads to the back, neck, shoulders, arms, or jaw, accompanied by shortness of breath.... Read more


view channel
Image: Dr. Derek Cool demonstrating the new robotic 3D ultrasound system (Photo courtesy of Lawson Health)

Robotic 3D Ultrasound System Improves Accuracy of Liver Cancer Treatment

Liver cancer is the fourth-leading cause of cancer death in the world. Surgery is one treatment option for liver cancer, although thermal ablation which uses heat to destroy the cancerous tumor has less... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.