We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Diagnoses Lung Disease from CT Images as Accurately as Medical Specialists

By MedImaging International staff writers
Posted on 31 Jul 2022
Print article
Image: AI performs as well as medical specialists in analyzing lung disease (Photo courtesy of Nagoya University)
Image: AI performs as well as medical specialists in analyzing lung disease (Photo courtesy of Nagoya University)

Doctors have waited a long time for an early means of diagnosing idiopathic pulmonary fibrosis, a potentially fatal disease that can scar a person’s lungs. Except for drugs that can delay the disease’s progression, established therapies do not exist. Since doctors face many difficulties diagnosing the disease, they often have to request a specialist diagnosis. In addition, many of the diagnostic techniques, such as lung biopsy, are highly invasive. These investigative measures may exacerbate the disease, increasing a patient's risk of dying. Now, researchers have developed an artificial intelligence (AI) algorithm that accurately and quickly diagnoses idiopathic pulmonary fibrosis. The algorithm makes its diagnosis based only on information from non-invasive examinations, including lung images and medical information collected during daily medical care.

In order to develop the new technology to diagnose idiopathic pulmonary fibrosis, researchers at Nagoya University (Nagoya, Japan) used AI to analyze medical data collected during normal care from patients undergoing interstitial pneumonia treatment. They found that their AI diagnosed idiopathic pulmonary fibrosis with a similar level of accuracy as a human specialist. Despite finding that their AI performed just as well as experts, the team stress that they do not see it as replacing medical professionals. Instead, they hope that specialists will use AI in medical treatment to ensure that they do not miss opportunities for early treatment. Its use would also avoid invasive procedures, such as lung biopsies, which could save lives.

“Idiopathic pulmonary fibrosis has a very poor prognosis among lung diseases,” said Taiki Furukawa, Assistant Professor of the Nagoya University Hospital. “It has been difficult to diagnose even for general respiratory physicians. The diagnostic AI developed in this study would allow any hospital to get a diagnosis equivalent to that of a specialist. For idiopathic pulmonary fibrosis, the developed diagnostic AI is useful as a screening tool, and may lead to personalized medicine by collaborating with medical specialists.”

Furukawa is excited about the possibilities: “The practical application of diagnostic AI and collaborative diagnosis with specialists may lead to a more accurate diagnosis and treatment. We expect it to revolutionize medical care.”

Related Links:
Nagoya University 

Gold Supplier
Ultrasound System
FUTUS LE
New
Gold Supplier
Electrode Solution and Skin Prep
Signaspray
New
Web-Based DICOM Viewer
iQ-4VIEW
New
Mobile Imaging Table
medifa 8000 hybrid

Print article
Radcal

Channels

Radiography

view channel
Image: Intelligent NR provides high-quality diagnostic images containing significantly less grainy noise (Photo courtesy of Canon)

AI-Driven DR System Produces Higher Quality Images While Limiting Radiation Doses in Pediatric Patients

Ionizing radiation is a fundamental element in producing diagnostic X-rays, yet it's widely acknowledged for its cancer risk potential. Digital projection radiography, a vital imaging modality, accounts... Read more

MRI

view channel
Image: The researchers are using MRI-guided radiation therapy that pairs daily MRIs with radiation treatment (Photo courtesy of Sylvester)

AI Technique Automatically Traces Tumors in Large MRI Datasets to Guide Real-time Glioblastoma Treatment

Treating glioblastoma, a prevalent and aggressive brain cancer, involves the use of radiation therapy guided by CT imaging. While this method is effective in targeting radiation, it doesn't provide real-time... Read more

Ultrasound

view channel
Image: The new ultrasound patch can measure how full the bladder is (Photo courtesy of MIT)

Ultrasound Patch Designed to Monitor Bladder and Kidney Health Could Enable Earlier Cancer Diagnosis

Bladder dysfunction and related health issues affect millions worldwide. Monitoring bladder volume is crucial for assessing kidney health. Traditionally, this requires a visit to a medical facility and... Read more

Nuclear Medicine

view channel
Image: A novel PET radiotracer facilitates early, noninvasive detection of IBD (Photo courtesy of Karmanos)

New PET Radiotracer Aids Early, Noninvasive Detection of Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an inflammatory condition of the gastrointestinal tract affecting roughly seven million individuals globally.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Attendees can discover innovative products and technology in the RSNA 2023 Technical Exhibits (Photo courtesy of RSNA)

RSNA 2023 Technical Exhibits to Offer Innovations in AI, 3D Printing and More

The 109th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA, Oak Brook, IL, USA) to be held in Chicago, Nov. 26 to 30 is all set to offer a vast array of medical... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.