We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
CIRS

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Study Reveals Value of Using Both Human and AI in Detecting Breast Cancer

By MedImaging International staff writers
Posted on 29 Apr 2022
Print article
Image: Radiologists and AI systems show differences in breast-cancer screenings (Photo courtesy of Unsplash)
Image: Radiologists and AI systems show differences in breast-cancer screenings (Photo courtesy of Unsplash)

Radiologists and artificial intelligence (AI) systems yield significant differences in breast-cancer screenings, according to a new study, revealing the potential value of using both human and AI methods in making medical diagnoses.

The analysis by a team of researchers at New York University (New York, NY, USA) centered on a specific AI tool: Deep neural networks (DNNs), which are layers of computing elements - “neurons” - simulated on a computer. A network of such neurons can be trained to “learn” by building many layers and configuring how calculations are performed based on data input - a process called “deep learning.” The scientists compared breast-cancer screenings read by radiologists with those analyzed by DNNs.

The researchers found that DNNs and radiologists diverged significantly in how they diagnose a category of malignant breast cancer called soft tissue lesions. While radiologists primarily relied on brightness and shape, the DNNs used tiny details scattered across the images. These details were also concentrated outside of the regions deemed most important by radiologists. By revealing such differences between human and machine perception in medical diagnosis, the researchers moved to close the gap between academic study and clinical practice.

“While AI may offer benefits in healthcare, its decision-making is still poorly understood,” explains Taro Makino, a doctoral candidate in NYU’s Center for Data Science and the paper’s lead author. “Our findings take an important step in better comprehending how AI yields medical assessments and, with it, offer a way forward in enhancing cancer detection.”

“The major bottleneck in moving AI systems into the clinical workflow is in understanding their decision-making and making them more robust,” added Makino. “We see our research as advancing the precision of AI’s capabilities in making health-related assessments by illuminating, and then addressing, its current limitations.”

“In these breast-cancer screenings, AI systems consider tiny details in mammograms that are seen as irrelevant by radiologists,” explained Krzysztof Geras, Ph.D., faculty in NYU Grossman School of Medicine’s Department of Radiology. “This divergence in readings must be understood and corrected before we can trust AI systems to help make life-critical medical decisions.”

Related Links:
New York University 


Print article
Sun Nuclear
Radcal

Channels

Radiography

view channel
Image: CE-marked and FDA-cleared ExacTrac Dynamic enables the delivery of precision radiotherapy (Photo courtesy of Brainlab)

Next-Gen Technology Enables Precision Radiotherapy with “On-The-Fly” X-Ray Confirmation

Deep Inspiration Breath Hold (DIBH) is a well-established technique and standard of care in treating breast cancer with radiation therapy. When a patient takes a deep breath, the distance between the heart... Read more

MRI

view channel
Image: fMRI can be used as non-invasive method for predicting complications in chronic liver disease (Photo courtesy of Pexels)

Functional MRI (fMRI) Offers Non-Invasive Method for Risk Assessment in Liver Disease

In a recent study, a team of scientists has shown that functional magnetic resonance imaging (fMRI) can be used as a non-invasive method for predicting complications in chronic liver disease.... Read more

Ultrasound

view channel
Image: Resona I9 ultrasound system features innovative design elements (Photo courtesy of Mindray)

Mindray’s Latest Resona I9 Ultrasound System Provides Innovation-Driven Experience

Mindray (Shenzhen, China) has launched a new ultrasound system which provides an entirely new experience, driven by innovation to address today’s clinical challenges. Mindray’s latest Resona I9 ultrasound... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: Global diagnostic imaging market is driven by technological advancements (Photo courtesy of Pexels)

Global Diagnostic Imaging Market to Surpass USD 33 Billion by 2026

The global diagnostic imaging market is one of the most critical segments of the healthcare sector. Medical imaging helps in early detection and diagnosis of diseases at a stage when they can be easily... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.