We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
25 Feb 2021 - 27 Feb 2021

Deep Learning Aids in TB Detection via Smartphone

By MedImaging International staff writers
Posted on 07 Dec 2020
Print article
Image: TB can be detected via smartphone photos in resource poor settings (Photo courtesy of RSNA)
Image: TB can be detected via smartphone photos in resource poor settings (Photo courtesy of RSNA)
An artificial intelligence (AI) pattern recognition model can detect tuberculosis (TB) on phone-captured chest X-ray images.

The TBShoNet neural network, developed by researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and National Cheng Kung University (NCKU; Tainan, Taiwan), was first pre-trained on a database containing 250,044 chest X-rays with 14 pulmonary labels, which did not include TB. The pre-trained model was then connected to an additional two-layer neural network trained on augmented chest X-ray images. It was then recalibrated for chest X-ray smartphone photographs by using simulation methods to augment the dataset.

Subsequently, 662 photographs of chest X-ray taken by five different phones (330 TB and 326 normal X-rays) were processed in order to test TBShoNet model performance. The results showed that sensitivity and specificity for TB classification were 81% and 84%, respectively. The study was presented at the Radiological Society of North America (RSNA) 106th Scientific Assembly and Annual Meeting, held online during November 2020.

“An early diagnosis of TB is crucial but challenging for resource-poor countries. TBShoNet provides a method to develop an algorithm that can be deployed on phones to assist healthcare providers in areas where radiologists and high-resolution digital images are unavailable,” said lead author and study presenter Po-Chih Kuo, PhD, of MIT and NCKU. “We need to extend the opportunities around medical artificial intelligence to resource-limited settings.”

TB is an infectious disease caused by the bacteria Mycobacterium tuberculosis. The disease primarily affects the lungs, but it can also affect other organs. Typical symptoms include persistent coughing (in which a person can bring up blood), weight loss, night sweats, a fever, tiredness and fatigue, and loss of appetite. TB is one of the most deadliest diseases in the world, since the bacteria can easily spread from person to person through airborne particles, and extensively drug-resistant (XDR) totally resistant TB types are becoming increasingly more common.

Related Links:
Massachusetts Institute of Technology
National Cheng Kung University



Print article

Channels

Industry News

view channel
Illustration

New AI-Based Image Analysis Platform Enables Physicians to Analyze CT and MRI Scans in Half the Time of Traditional Methods

The US Food and Drug Administration (FDA) has granted 510(k) clearance for a new image analysis platform that enables physicians to analyze CT and MRI scans in half the time of traditional methods.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.