We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Printed Glioblastomas Helps Evaluate Therapeutic Efficacy

By MedImaging International staff writers
Posted on 19 Mar 2020
Image: A new imaging technique enables the study of 3D-printed brain tumors (Photo courtesy of RPI)
Image: A new imaging technique enables the study of 3D-printed brain tumors (Photo courtesy of RPI)
A new study shows how bioprinting and imaging of glioblastoma cells can be used to generate three dimensional (3D) models of brain tumors.

Developed at the European Molecular Biology Laboratory (Heidelberg, Germany), Northeastern University (Boston, MA, USA), the Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions, the integrated platform is designed to generate an in-vitro 3D glioblastoma multiforme (GBM) model with perfused vascular channels, made out of patient-derived tumor cell bio-inks printed together with the blood vessels. The bioprinted blood vessels also provide channels for therapeutics to travel through, such as the chemotherapy drug Temozolomide.

In the body, drug delivery to GBM cells is especially complicated because of the blood-brain barrier (BBB). The 3D model, on the other hand, enables long-term culture and drug delivery and provides a more accurate evaluation of a drug's effectiveness than directly injecting the therapy into the cells. The 3D model also facilitates mesoscopic fluorescence molecular tomography (2GMFMT), a novel imaging method that can noninvasively assess longitudinal fluorescent signals from the therapeutic drugs over the whole in vitro model. The study was published on March 6, 2020, in Science Advances.

“There is a need to understand the biology and the complexity of the glioblastoma. What's known is that glioblastomas are very complex in terms of their makeup, and this can differ from patient to patient,” said corresponding author professor of biomedical engineering Xavier Intes, PhD, of RPI. “We developed a new technology that allows us to go deeper than florescence microscopy. It allows us to see, first, if the cells are growing, and then, if they respond to the drug. That's the unique part of the bioprinting that has been very powerful. It's closer to what would happen in vivo.”

GBM is a highly invasive malignant brain tumor that carries a dismal prognosis, with a median survival of 14 months and less than 10% 5-year survival rate after diagnosis, despite aggressive therapy, including surgery, radiotherapy, and chemotherapy.

Related Links:
European Molecular Biology Laboratory
Northeastern University
Rensselaer Polytechnic Institute


Portable Color Doppler Ultrasound System
S5000
New
Half Apron
Demi
Digital X-Ray Detector Panel
Acuity G4
Multi-Use Ultrasound Table
Clinton

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.