We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Miniature NMR Implant Measures Neuronal Activity

By MedImaging International staff writers
Posted on 17 Dec 2019
Print article
Image: The final functioning NMR probe mounted on a PCB holder (Photo courtesy of MPG)
Image: The final functioning NMR probe mounted on a PCB holder (Photo courtesy of MPG)
A highly sensitive nuclear magnetic resonance (NMR) implant probe enables brain physiology studies with enhanced spatial and temporal resolution.

Developed at the Max-Planck-Institute for Biological Cybernetics (MPG; Tübingen, Germany), the University of Tübingen (Germany), and the University of Stuttgart (Germany), the capillary monolithic probe combines an ultra-sensitive 300 µm coil with a complete NMR transceiver, enabling in vivo measurements of blood oxygenation and flow in nanoliter volumes at a sampling rate of 200 Hz. To minimize the risk of tissue damage during probe insertion, the multimodal probe possesses a needle-shape with shaft widths of 50-300 μm and shaft thicknesses below 100 μm.

The result is a complementary meta-oxide-semiconductor (CMOS) probe with the versatility of brain imaging technique that analyzes specific neuronal activity of the brain. According to the researchers, the design setup will allow scalable solutions by expanding the collection of data from more than a single area, but on the same device. The scalability will allow the use of other sensing modalities as well, such as electrophysiological, optogenetic, proton spectroscopy, and 31P spectroscopy measurements with high spatial resolution. The study was published on November 25, 2019 in Nature Methods.

“The integrated design of a nuclear magnetic resonance detector on a single chip supremely reduces the typical electromagnetic interference of magnetic resonance signals,” said senior author Klaus Scheffler, PhD, of the MPG department of high-field magnetic resonance. “This enables neuroscientists to gather precise data from minuscule areas of the brain, and to combine them with information from spatial and temporal data of the brain's physiology.”

The researchers suggest the system will allow the capture of localized activity within single layers, and preferably within regions of different cellular components, such as dendrites. In addition, it will allow the assessment of neurovascular coupling on a fine time scale, enabling extremely fast coupling that can help resolve correlations between electrical signals and proton magnetization changes, far below the commonly assumed time lag of several seconds.

Related Links:
Max-Planck-Institute for Biological Cybernetics
University of Tübingen
University of Stuttgart

Gold Supplier
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
Retrofittable DR Mammography Solution
CT Injector Syringe
MDT CT Injector Syringe
Digital Ultrasound Scanner
PL-3018I 3D

Print article
FIME - Informa



view channel
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)

Sustainable Solar Cell Material Could Revolutionize Medical Imaging

The use of X-rays for internal body imaging has dramatically changed non-invasive medical diagnostics. Yet, the high dose of X-rays required for these imaging techniques, due to the poor performance of... Read more


view channel
Image: Ezra Flash AI has received 510(k) FDA clearance, enabling roll out of the world’s first 30-minute full body MRI (Photo courtesy of Ezra)

World's First 30 Minute Full Body MRI Scan Offers Fast, Accurate and Affordable Cancer Diagnosis

A cutting-edge artificial intelligence (AI) solution enhances MR image quality, paving the way for a reduction in scan time and consequently, the cost of MRI procedures. This innovation now makes it feasible... Read more


view channel
Image: Attaching microbubbles to macrophages can create high-resolution and sensitive tracking images useful for disease diagnosis (Photo courtesy of Georgia Institute of Technology)

Ultrasound Can Image Immune Cells Enhanced With Microbubbles to Diagnose Early Stage Cancer

Macrophages, a type of white blood cell, protect the human body by surrounding and consuming foreign particles such as bacteria, viruses, and dead cells. Notably, these immune cells tend to gather within... Read more

Nuclear Medicine

view channel
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

New Imaging Method Superior for Diagnosing Multiple Types of Cancer

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.