Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Neural Network Improves Prostate Cancer Detection

By MedImaging International staff writers
Posted on 29 Apr 2019
A new artificial intelligence (AI) system identifies and predicts the aggressiveness of prostate cancer (PC) at the same level of accuracy as experienced radiologists.

Developed at the University of California, Los Angeles (UCLA; USA), FocalNet is a convolutional neural network (CNN) that uses an algorithm with more than a million trainable variables. More...
The CNN was trained using multi-parametric MRI (mp-MRI) scans of 417 men with PC prior to robotic-assisted laparoscopic prostatectomy (RALP). In order to learn how to classify the aggressiveness of the tumor using the Gleason score (GS), the results were compared to the actual pathology specimen. They then compared the AI system's results with readings by UCLA radiologists who had more than 10 years of experience.

The results revealed that in the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet showed 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions, respectively. With the comparison to the prospective performance of radiologists using current diagnostic guidelines, FocalNet demonstrated a detection sensitivity for clinically significant lesions (80.5%) comparable to that of radiologists with at least 10 years of experience (83.9%). The study was presented at the IEEE International Symposium on Biomedical Imaging (ISBI), held during April 2019 in Venice (Italy).

“Multi-parametric MRI is considered the best non-invasive imaging modality for diagnosing prostate cancer. However, mp-MRI for PC diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness,” concluded senior author Kyunghyun Sung, of the UCLA department of radiology, and colleagues. “CNNs are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection.”

CNN’s use a cascade of many layers of nonlinear processing units for feature extraction and conversion, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
University of California, Los Angeles


Pocket Fetal Doppler
CONTEC10C/CL
Multi-Use Ultrasound Table
Clinton
Digital X-Ray Detector Panel
Acuity G4
New
Mammo DR Retrofit Solution
DR Retrofit Mammography
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.