We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Fiber-Based Endoscopy Enables Deep-Brain Imaging

By MedImaging International staff writers
Posted on 24 Dec 2018
Print article
Image: Neuronal somata, neuronal processes, and time-lapse images of a hemorrhage in the primary visual cortex (Photo courtesy of IPTH).
Image: Neuronal somata, neuronal processes, and time-lapse images of a hemorrhage in the primary visual cortex (Photo courtesy of IPTH).
A real-time fluorescent imaging probe captures neuronal dynamics in deep-brain layers at a resolution of around one micron, according to a new study.

Developed by researchers at the Leibniz Institute of Photonic Technology (IPTH; Germany) and the University of Edinburgh (United Kingdom), the multimode fiber (MMF) endoscopic probe provides a compact, ultranarrow, high-speed system for fluorescent imaging that can achieve an average resolution of 1.18 µm across a 50-µm field of view, resulting in 7-kilopixel images at a rate of 3.5 frames per second. The hair-thin probe also overcomes the limitations on size inside living tissues, leaving no structural and functional impact.

The compact, high-speed imaging system was used to resolve micron-sized subcellular neural structures in an anaesthetized mouse model involving 5 mice. The reduced footprint of the imaging probe allowed observations of structures deep within various brain tissues, including in vivo resolution of neuronal connectivity in previously inaccessible structures, such as the visual cortex and the hippocampus. The researchers suggest that the technique will help explore many knowledge gaps, such as those regarding memory formation and sensory perception. The study was published on November 21, 2018, in Light: Science and Applications.

“We have designed a highly optimized optical pathway for fluorescence-based imaging of deep brain structures with micrometric spatial resolution, while causing minimal damage to the tissue surrounding the fiber penetration area,” concluded senior author Tomáš Čižmár, PhD, of IPTH, and colleagues. “Deploying the most efficient wavefront-shaping algorithms and, currently, the fastest possible hardware for light modulation, this provides adequate spatial and temporal resolution for fluorescent imaging of subcellular structures in living tissues. The robust design allows continuous imaging for periods of several hours.”

Digital micromirror devices (DMDs) have recently opened up a whole new range of opportunities in the field of holographic control of light propagation in complex media by increasing light modulation refresh rates by several orders of magnitude. As a result, the foci behind a MMF can now be scanned at several tens of kHz, acquiring images at speeds approaching video rates. In addition, single fiber-based imaging not only shortens the post-operative recovery period but also eliminates the need to implant optical imaging elements.

Related Links:
Leibniz Institute of Photonic Technology
University of Edinburgh

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Brachytherapy Planning System
Oncentra Brachy
Crossover Angiography System
Trinias C16/C12/F12 Unity Smart Edition
New
Color Doppler Ultrasound System
DRE Crystal 4PX

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.