Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Fiber-Based Endoscopy Enables Deep-Brain Imaging

By MedImaging International staff writers
Posted on 24 Dec 2018
A real-time fluorescent imaging probe captures neuronal dynamics in deep-brain layers at a resolution of around one micron, according to a new study.

Developed by researchers at the Leibniz Institute of Photonic Technology (IPTH; Germany) and the University of Edinburgh (United Kingdom), the multimode fiber (MMF) endoscopic probe provides a compact, ultranarrow, high-speed system for fluorescent imaging that can achieve an average resolution of 1.18 µm across a 50-µm field of view, resulting in 7-kilopixel images at a rate of 3.5 frames per second. More...
The hair-thin probe also overcomes the limitations on size inside living tissues, leaving no structural and functional impact.

The compact, high-speed imaging system was used to resolve micron-sized subcellular neural structures in an anaesthetized mouse model involving 5 mice. The reduced footprint of the imaging probe allowed observations of structures deep within various brain tissues, including in vivo resolution of neuronal connectivity in previously inaccessible structures, such as the visual cortex and the hippocampus. The researchers suggest that the technique will help explore many knowledge gaps, such as those regarding memory formation and sensory perception. The study was published on November 21, 2018, in Light: Science and Applications.

“We have designed a highly optimized optical pathway for fluorescence-based imaging of deep brain structures with micrometric spatial resolution, while causing minimal damage to the tissue surrounding the fiber penetration area,” concluded senior author Tomáš Čižmár, PhD, of IPTH, and colleagues. “Deploying the most efficient wavefront-shaping algorithms and, currently, the fastest possible hardware for light modulation, this provides adequate spatial and temporal resolution for fluorescent imaging of subcellular structures in living tissues. The robust design allows continuous imaging for periods of several hours.”

Digital micromirror devices (DMDs) have recently opened up a whole new range of opportunities in the field of holographic control of light propagation in complex media by increasing light modulation refresh rates by several orders of magnitude. As a result, the foci behind a MMF can now be scanned at several tens of kHz, acquiring images at speeds approaching video rates. In addition, single fiber-based imaging not only shortens the post-operative recovery period but also eliminates the need to implant optical imaging elements.

Related Links:
Leibniz Institute of Photonic Technology
University of Edinburgh


Medical Radiographic X-Ray Machine
TR30N HF
High-Precision QA Tool
DEXA Phantom
New
Adjustable Mobile Barrier
M-458
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.