We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Hybrid Nanomaterial Platform Effectively Kills Cancer Cells

By MedImaging International staff writers
Posted on 27 Aug 2018
Image: A new study claims magnetite-gold hybrid nanomaterials advance theranostic therapies (Photo courtesy of NUST-MISiS).
Image: A new study claims magnetite-gold hybrid nanomaterials advance theranostic therapies (Photo courtesy of NUST-MISiS).
A magnetite-gold particle hybrid nanomaterial could serve as a universal platform to both detect cancer cells and target drug delivery to kill them, claims a new study.

Developed at the Russian National University of Science and Technology (NUST-MISiS; Moscow, Russia), the University of Duisburg-Essen (Germany), and other institutions, the hybrid nanomaterial is the result of successful epitaxial growth of 25 nm octahedral-shaped magnetite (Fe3O4) nanocrystals on 9 nm gold (Au) seed nanoparticles, using a modified wet-chemical synthesis. The nanoparticles exhibit bulk-like magnetic properties and an octahedral spatial morphology resembling a so-called “nanodumbbell” that is capable of carrying almost any drug to a tumor cell.

The nanoparticles can thus provide two functional surfaces. For instance, they could be conjugated with two fluorescent dyes, or a combination of drug and dye, thus allowing for simultaneous tracking of the nanoparticle vehicle and the drug cargo both in-vitro and in-vivo. For the study, the researchers verified delivery to tumors and payload release in real time using intravital microscopy. Replacing the dyes with cell-specific molecules and drugs could make the Fe3O4-Au hybrids a unique platform for theranostics, claim the researchers.

For example, if the pathogenic cells are tagged with magnetic nanoparticles, they can be diagnosed with the help of magnetic resonance imaging (MRI) and subsequently destroyed using either a chemotherapy drug or via a strong magnetic field that could heats and kills cancer cells. Preliminary laboratory tests in mice with grafted tumors have already been completed, and the most optimistic researchers on the project say it will be possible to proceed to pre-clinical trials in just two to three years. The study was published on July 26, 2018, in Nature Scientific Reports.

“Hybrid materials for theranostics are increasingly attracting attention since they enable the combination of different properties and functions in one multipurpose hybrid material. In particular, high adaptability is achieved by controlling the surface chemistry,” concluded lead author Mariya Efremova, PhD, of NUST-MISiS, and colleagues. “Due to biocompatibility, Fe3O4 and Au are the materials of choice for therapeutic and diagnostic dual use. Such NPs represent a unique platform for modern theranostics, comprising the diagnostics function together with the ability for studying the cargo and vehicle functions separately and in conjugation.”

Theranostics uses specific biological pathways to acquire diagnostic images and deliver a therapeutic dose of radiation. Once a specific diagnostic test shows a particular molecular target on a tumor, the therapy agent can be specifically targeted to that receptor, providing a more targeted and efficient form of pharmacotherapy.

Related Links:
Russian National University of Science and Technology
University of Duisburg-Essen
Pocket Fetal Doppler
CONTEC10C/CL
New
Adjustable Mobile Barrier
M-458
Digital Radiographic System
OMNERA 300M
New
Radiation Safety Barrier
RayShield Intensi-Barrier

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.