We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Bio-Inspired Imager Improves Cancer Surgery

By MedImaging International staff writers
Posted on 16 Apr 2018
Print article
A new camera that mimics the intricate visual system of a butterfly can improve sensitivity in near-infrared (NIR) fluorescence image-guided surgery, claims a new study.

Developed at the University of Illinois (UI; Urbana-Champaign, USA) and Washington University in St. Louis (WUSTL; MO, USA), the new camera is comprised of an artificial multispectral sensor--inspired by the Morpho butterfly’s compound eye--that interlaces nano-scale spectral tapetal filters with a photodetector array, thus enabling collection of color and NIR fluorescence information on one imaging device. The single-chip multispectral imager is 1,000 times more sensitive and offers seven times better spatial co-registration accuracy than current clinical imaging systems.

The unique design allows each pixel to take in the number of photons needed to build up an image; by changing exposure time so as to allow each pixel to detect the photons necessary, bright fluorescence images can be created without overexposing the color image of the tissue. Testing showed the camera seamlessly integrates into the surgical workflow, providing real-time information on cancerous tissue and sentinel lymph nodes. Integrating the detector array and optics into a single sensor makes it small, inexpensive, and insensitive to temperature changes. The study was published in the April 2018 issue of Optica.

“We realized that the problems of today's infrared imagers could be mitigated by using nanostructures similar to those in the Morpho butterfly. Their compound eyes contain photoreceptors located next to each other such that each photoreceptor senses different wavelengths of light in a way that is intrinsically co-registered,” said lead author Missael Garcia, PhD, of UI. “The bioinspired imager would be useful for removing various types of cancers, including melanomas, prostate cancer, and head and neck cancers.”

"During surgery, it is imperative that all the cancerous tissue is removed, and we've created an imaging platform that could help surgeons do this in any hospital around the world because it is small, compact and inexpensive,” said senior author Professor Viktor Gruev, PhD. “Under bright surgical lights, our instrument was 1,000 times more sensitive to fluorescence than the imagers currently approved. Because the bioinspired imager can reveal fluorescence that is deep in the tissue, it sped up the process of lymph node identification and helped surgeons find lymph nodes that couldn't be seen by eyesight alone.”

Image-guided surgery can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art NIR fluorescence-imaging systems are bulky and costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on unaided vision and palpation as primary sensing modalities for distinguishing cancerous from healthy tissue.

Related Links:
University of Illinois
Washington University in St. Louis

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
DCU50
Fetal Monitor
Avante Compact II
New
Ultrasound Catheter Connector Cover
ACUSON AcuNav

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.