Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New OCT Technique Images Cellular Structure of Eye

By MedImaging International staff writers
Posted on 16 Aug 2017
A new study describes how linear optical coherence tomography (OCT) allows clinicians to resolve individual photoreceptors, capillary blood vessels, and nerve fibers in the same image.

Developed at the Medical University of Vienna (MedUni; Austria) Line Field OCT uses noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in OCT images of the human retina in vivo. More...
The system is based on a line-field spectral-domain OCT system with a high tomogram rate. The researchers also applied DAC on functional OCT angiography data in order to improve lateral resolution and compensate for defocus.

Functionally, the Line Field OCT is similar to a scanner, focusing a thin linear beam of light onto the internal structures of the eye. With speeds reaching up to 2.5 kHz, DAC can be applied not only to image human cone photoreceptors, but also to obtain an aberration- and defocus-corrected three-dimensional (3D) volume. DAC speed necessities were measured by examining the axial motion of the OCT system in 36 subjects, with the aim of appropriately quantifying motion analysis. The study was published in the August 2017 issue of Optica.

“Our new technique enables us to make digital corrections without the need for expensive hardware-based adaptive lenses. The linear illumination that is used allows very rapid frame rates, which are extremely important for these corrections,” said lead author Laurin Ginner, MSc, of the MedUni Center for Medical Physics and Biomedical Engineering. “This enables us to correct aberrations over the entire three-dimensional volume of the retina.”

OCT is based on low-coherence interferometry, typically employing near-infrared (NIR) light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Depending on the properties of the light source, OCT can achieve sub-micrometer resolution. OCT, being an echo imaging method, is similar to ultrasound imaging, but is limited to 1-2 mm below the surface in biological tissue, as at greater depths the proportion of light that escapes without scattering is too small to be detected.

Related Links:
Medical University of Vienna


Digital X-Ray Detector Panel
Acuity G4
3T MRI Scanner
MAGNETOM Cima.X
Multi-Use Ultrasound Table
Clinton
Medical Radiographic X-Ray Machine
TR30N HF
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.