We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiation-Free Approach Images Molecules in Brain

By MedImaging International staff writers
Posted on 22 Dec 2016
Print article
Image: CGRP-based sensors dilate blood vessels in the brain to make them visible on MRI (Photo courtesy of Alan Jasanoff / MIT).
Image: CGRP-based sensors dilate blood vessels in the brain to make them visible on MRI (Photo courtesy of Alan Jasanoff / MIT).
A new study describes how protein-based sensors can cause blood vessels to dilate near their targets, allowing them to be detected by magnetic resonance imaging (MRI).

Developed by researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the probes are based on a modified calcitonin gene-related peptide (CGRP), which is active primarily during migraines or inflammation. The novel CGRP-related peptide is used to artificially activate vasculature dilation at nanomolar concentrations, thus enhancing an endogenous multimodal tissue contrast which can then be readily measured by optical and MRI scans in order to determine where the proteases were detected.

In order to direct the CGRP-related peptide to their targets, they have been engineered so that they are trapped within a protein enclosure that keeps them from interacting with blood vessels. But when the peptides encounter proteases in the brain, the enclosures are disrupted, releasing CGRP, which causes nearby blood vessels to dilate. The researchers are now working on adapting the design to monitor neurotransmitters by modifying the enclosures surrounding the CGRP so that they can be removed by interaction with a specific neurotransmitter. The study was published on December 2, 2016, in Nature Communications.

“Currently the gold standard approach to imaging molecules in the brain is to tag them with radioactive probes. However, these probes offer low resolution and they can't easily be used to watch dynamic events,” said lead author professor of biological engineering Alan Jasanoff, PhD. “This is an idea that enables us to detect molecules that are in the brain at biologically low levels, and to do that with these imaging agents or contrast agents that can ultimately be used in humans.”

The vasculature is one of the most potent endogenous contrast sources available to imaging modalities. Vascular hemodynamic changes can be evoked by a variety of chemical species, many of which act at nanomolar concentrations. The changes in blood volume, flow, or oxygenation are robustly detectable by MRI, optical, and ultrasound-based noninvasive imaging, as well as by positron emission tomography (PET), single photon computed tomography, and X-ray imaging with intravascular tracers.

Related Links:
Massachusetts Institute of Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
C-Arm with FPD
Digiscan V20 / V30
Under Table Shield
3 Section Double Pivot Under Table Shield
New
Breast Imaging Workstation
SecurView

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.