We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Technique Uses Lasers to Image Living Tissues

By Daniel Beris
Posted on 16 Nov 2016
Print article
Image: Researchers found embedded nanoparticles could improve regular microscopes six-fold (Photo courtesy of MIT).
Image: Researchers found embedded nanoparticles could improve regular microscopes six-fold (Photo courtesy of MIT).
A new imaging technique uses tiny embedded particles to illuminate cellular structures in deep tissue and other dense and opaque materials.

Developed by researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), Massachusetts General Hospital (MGH; Boston, USA), and the Jožef Stefan Institute (Ljubljana, Slovenia), the particles are made from lead iodide perovskite, a material that absorbs and traps light efficiently. When a laser beam is projected at the particles, they emit a normal, diffuse fluorescent light. But if the incoming laser's power is tuned to certain threshold, the particles will instantly generate laser light.

The tiny, 6-micron-long particles have a rod-shaped geometry – much like chopsticks – and can allow a specific wavelength of light to bounce back and forth along the particles' length, resulting in images that can be captured at resolutions six times higher than current fluorescence-based microscopes. According to the researchers, the optical technique, called LAser particle Stimulated Emission (LASE) microscopy, could be used to image a specific focal plane, or a particular layer of biological tissue. The study was published on November 4, 2016, in Physical Review Letters.

“Theoretically, scientists can shine a laser beam into a three-dimensional sample of tissue embedded throughout with laser particles, and use a lens to focus the beam at a specific depth,” said lead author MIT graduate student Frederick Sangyeon Cho, MSc. “Only those particles in the beam's focus will absorb enough light or energy to turn on as lasers themselves. All other particles upstream of the path's beam should absorb less energy and only emit fluorescent light.”

“Our idea is, why not use the cell as an internal light source? We can collect all this stimulated emission and can distinguish laser from fluorescent light very easily using spectrometers,” concluded Mr. Cho. “We expect this will be very powerful when applied to biological tissue, where light normally scatters all around, and resolution is devastated. But if we use laser particles, they will be the narrow points that will emit laser light. So we can distinguish from the background and can achieve good resolution.”

Perovskite, named after Russian mineralogist Lev Perovski (1792–1856), is composed of calcium titanate, and was discovered in the Ural Mountains by Gustav Rose in 1839. Perovskites have excellent light-emitting properties, and have been used to make light-emitting diodes and optically pumped lasers. They may also be used to design solution-processed lasers that can be tuned across the entire visible and near infrared (NIR) spectrum by changing the chemical composition of the perovskite film.

Related Links:
Massachusetts Institute of Technology
Massachusetts General Hospital
Jožef Stefan Institute
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
C-Arm with FPD
Digiscan V20 / V30
New
Color Doppler Ultrasound System
DRE Crystal 4PX
Dose Calibration Electrometer
PC Electrometer

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.