We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




New Imaging System Maps Nanomechanical Properties

By MedImaging staff writers
Posted on 08 Jan 2008
An imaging system has been developed that can quickly map the mechanical properties of materials--how stiff or stretchy they are, for example--at scales on the order of billionths of a meter. The new tool can be a cost-effective way to design and characterize mixed nanoscale materials such as composites or thin-film structures.

The nanomechanical mapper, created by scientists from the U.S. National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA), utilizes custom software and electronics to process data acquired by a conventional atomic force microscope (AFM), transforming the microscope's normal topographic maps of surfaces into precise two-dimensional (2D) representations of mechanical properties near the surface. The images enable scientists to see variations in elasticity, adhesion or friction, which may vary in different materials even after they are mixed together. The NIST system, described fully for the first time in an article published in the January 1, 2008, issue of the journal Measurement Science and Technology, can make an image in minutes whereas competing systems might take an entire day.

The images are based on measurements and interpretations of changes in frequency as a vibrating AFM tip scans a surface. Such measurements have typically been made at stationary positions, but until now 2D imaging at many points across a sample has been too slow to be practical. The NIST DSP-RTS system (for digital signal processor-based resonance tracking system) has the special feature of locking onto and tracking changes in frequency as the tip moves over a surface. Mechanical properties of a sample are deduced from calculations based on measurements of the vibrational frequencies of the AFM tip in the air and changes in frequency when the tip contacts the material surface.

NIST materials researchers have used the system to map elastic characteristics of thin films with finer spatial resolution than is possible with other tools. The DSP-RTS can produce a 256 × 256 pixel image with micrometer-scale dimensions in 20 to 25 minutes. The new system also is modular and offers greater flexibility than competing approaches. Adding capability to map additional materials properties can be as simple as updating the software.


Related Links:
National Institute of Standards and Technology
Post-Processing Imaging System
DynaCAD Prostate
Pocket Fetal Doppler
CONTEC10C/CL
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Mobile X-Ray System
K4W

Channels

Nuclear Medicine

view channel
Image: CXCR4-targeted PET imaging reveals hidden inflammatory activity (Diekmann, J. et al., J Nucl Med (2025). DOI: 10.2967/jnumed.125.270807)

PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack

Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.