We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




POC MRI Helps Evaluate Intracerebral Hemorrhage

By MedImaging International staff writers
Posted on 09 Sep 2021
Print article
Image: The Swoop low-field pMRI device (Photo courtesy of HyperFine Research)
Image: The Swoop low-field pMRI device (Photo courtesy of HyperFine Research)
A new study confirms that portable magnetic resonance imaging (pMRI) can scan for intracerebral hemorrhage (ICH) at the point-of-care (POC).

Researchers at Yale School of Medicine (New Haven, CT, USA) and Yale New Haven Hospital (YNHH; CT, USA) conducted a study involving 144 pMRI examinations (56 ICH, 48 acute ischemic stroke, 40 healthy controls) taken at the bedside at YNHH from July 2018 to November 2020, and compared them to traditional neuroimaging scans (non-contrast computerized tomography (CT) or 1.5/3 T MRI) to examine the efficacy of the Hyperfine Research (Guilford, CT, USA) Swoop low-field (0.064 T) pMRI device.

Two neuroradiologists evaluated all pMRI scans, with one ICH imaging core lab researcher reviewing the cases of disagreement. The raters correctly detected ICH in 45 of 56 cases (80.4%), and blood-negative cases were correctly identified in 85 of 88 cases (96.6%). Manually segmented hematoma volumes and ABC/2 formula for estimated volumes on pMRI correlated with conventional imaging volumes. Hematoma volumes measured on pMRI at discharge also correlated with manual and ABC/2 volumes. The study was published on August 25, 2021, in Nature Communications.

“There is no question this device can help save lives in resource-limited settings, such as rural hospitals or developing countries,” said senior author professor of neurology and neurosurgery Kevin Sheth, MD, of Yale School of Medicine. “There is also now a path to see how it can help in modern settings. It is of critical importance to continue to collect more data across a range of stroke characteristics so that we can maximize the potential benefit of this approach.”

The Swoop pMRI is a low-field system that features standard permanent magnets that require no power or cooling systems, producing an image using low-power radio waves and magnetic fields instead. The Swoop is controlled via a tablet device, using sequences and protocols selected from a playlist. As a result, the system is 10X lower in weight than current fixed conventional MRI systems, costs a fraction of the price, is highly portable, and plugs directly into a standard electrical wall outlet, with 35X lower power consumption.

Related Links:
Yale School of Medicine
Yale New Haven Hospital
Hyperfine Research



Print article
CIRS
Radcal

Channels

Ultrasound

view channel
Image: Mindray TE7 Max Ultrasound System (Photo courtesy of Mindray)

Mindray's New TE7 Max Ultrasound System Expands Possibilities for Point of Care

Mindray North America (Mahwah, NJ, USA) has launched its new TE7 Max ultrasound system that maximizes the potential of ultrasound in the Point of Care (POC) market. The TE7 Max has a 21.... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Illustration

Intelerad Acquires Cloud Specialist Ambra Health to Form Global Enterprise Imaging Giant

Intelerad Medical Systems (Raleigh, NC, USA), a leading provider of medical image management solutions, has acquired Ambra Health (New York, NY, USA), maker of a leading cloud-based medical image management... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.