We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Reduces Interpretation Time for Lumbar Spine MRIs

By MedImaging International staff writers
Posted on 31 Jul 2024
Image: AI significantly reduces lumbar spine MRI interpretation times (Photo courtesy of 123RF)
Image: AI significantly reduces lumbar spine MRI interpretation times (Photo courtesy of 123RF)

Magnetic resonance imaging (MRI) of the lumbar spine is frequently used to evaluate low back pain, allowing for the detection of conditions like disc protrusion, nerve root compression, and disc degeneration. These findings are critical in determining which patients might need surgical intervention. However, assessing lumbar spinal stenosis on MRI requires grading at multiple levels, which is repetitive and time-intensive. Additionally, the lack of standardized grading systems for defining lumbar spinal stenosis results in inconsistent interpretations. In response, deep learning (DL) models using convolutional neural networks have been developed to aid in MRI analysis. Recent advances in machine learning, powered by artificial intelligence (AI), have the potential to speed up scan interpretation and accurately identify conditions like degeneration and other disc-related problems, thereby improving the efficiency, accuracy, reliability, and cost-effectiveness of radiological reporting.

A new study conducted at Sengkang General Hospital (Singapore) evaluated the effectiveness of an AI-based reading assistance tool in reducing the time required to interpret lumbar spine MRI exams and its accuracy in diagnosis compared to experienced radiologists. The study included a test dataset of MRI lumbar spine studies from 51 patients, consisting of 25 men and 26 women, conducted from December 1 to December 10, 2022. Both axial T1- and T2-weighted images from L1-2 to L5-S1 and sagittal T1- and T2-weighted images were analyzed.

The study findings published in the European Journal of Radiology reveal that the average interpretation time per MRI study was significantly shorter with AI assistance than without it. The interquartile range (IQR) for interpretation time with AI was 5.29 minutes, compared to 56.46 minutes without AI. The findings indicate that using a deep learning model to analyze MRI scans of lumbar spinal stenosis substantially saves time and enhances interobserver agreement among radiology in-training residents. As AI becomes more integrated into clinical practice, it is poised to increase clinical efficiency, help prioritize radiology tasks more effectively, and decrease the duration radiologists need to interpret results.

Related Links:
Sengkang General Hospital

New
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Half Apron
Demi
Mammography System (Analog)
MAM VENUS

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.