We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Identifies Patients Who Can Benefit from Clot Removal Surgery

By MedImaging International staff writers
Posted on 17 Oct 2019
Image: The machine-learning algorithm, called DeepSymNet, learned to identify post-stroke blood vessel blockages from CT angiogram images (Photo courtesy of Medical Xpress).
Image: The machine-learning algorithm, called DeepSymNet, learned to identify post-stroke blood vessel blockages from CT angiogram images (Photo courtesy of Medical Xpress).
Researchers at the University of Texas Health Science Center (Houston, TX, USA) have developed an algorithm that can help physicians outside of major stroke treatment centers assess if a patient suffering from ischemic stroke could benefit from an endovascular procedure for removing a clot blocking an artery.

Endovascular thrombectomy involves threading a catheter through the femoral artery in the leg till it reaches the brain, where the clot can be removed mechanically. Previous studies have demonstrated that the procedure can improve outcomes for stroke patients only in cases of minimal injury to brain tissue during treatment. However, only advanced neuroimaging in the form of emergent magnetic resonance imaging or computed tomography (CT) perfusion makes it possible to detect if the treatment will be suitable for a patient. Such technology and expertise are usually unavailable at a majority of community hospitals and primary stroke centers.

To fill this gap, the team of researchers developed a machine-learning tool that can be used with the widely available CT angiogram imaging technique. The tool can analyze images by automatically "learning" subtle image patterns that can be used as a proxy for other more advanced, but not readily available, imaging modalities such as CT perfusion. The researchers tested the tool by identifying patients in their stroke registry who had suffered a stroke or had conditions that mimicked stroke. Out of the 224 patients who had a stroke, 179 had cerebral blood vessels that were blocked. The machine learning algorithm, called DeepSymNet learned to identify these blockages from the CT angiogram images, and trained the software to use those same images to define the area of brain that had died, using concurrent acquired CT perfusion scans as the "gold standard."

"The advantage is you don't have to be at an academic health center or a tertiary care hospital to determine whether this treatment would benefit the patient. And best of all, CT angiogram is already widely used for patients with stroke," said Sunil A. Sheth, MD, corresponding author and assistant professor of neurology with McGovern Medical School at UT Health.

Related Links:
University of Texas Health Science Center

Multi-Use Ultrasound Table
Clinton
New
Mobile X-Ray System
K4W
Mammography System (Analog)
MAM VENUS
Portable X-ray Unit
AJEX140H

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.