Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Algorithm Identifies Patients Who Can Benefit from Clot Removal Surgery

By MedImaging International staff writers
Posted on 17 Oct 2019
Image: The machine-learning algorithm, called DeepSymNet, learned to identify post-stroke blood vessel blockages from CT angiogram images (Photo courtesy of Medical Xpress).
Image: The machine-learning algorithm, called DeepSymNet, learned to identify post-stroke blood vessel blockages from CT angiogram images (Photo courtesy of Medical Xpress).
Researchers at the University of Texas Health Science Center (Houston, TX, USA) have developed an algorithm that can help physicians outside of major stroke treatment centers assess if a patient suffering from ischemic stroke could benefit from an endovascular procedure for removing a clot blocking an artery.

Endovascular thrombectomy involves threading a catheter through the femoral artery in the leg till it reaches the brain, where the clot can be removed mechanically. Previous studies have demonstrated that the procedure can improve outcomes for stroke patients only in cases of minimal injury to brain tissue during treatment. However, only advanced neuroimaging in the form of emergent magnetic resonance imaging or computed tomography (CT) perfusion makes it possible to detect if the treatment will be suitable for a patient. Such technology and expertise are usually unavailable at a majority of community hospitals and primary stroke centers.

To fill this gap, the team of researchers developed a machine-learning tool that can be used with the widely available CT angiogram imaging technique. The tool can analyze images by automatically "learning" subtle image patterns that can be used as a proxy for other more advanced, but not readily available, imaging modalities such as CT perfusion. The researchers tested the tool by identifying patients in their stroke registry who had suffered a stroke or had conditions that mimicked stroke. Out of the 224 patients who had a stroke, 179 had cerebral blood vessels that were blocked. The machine learning algorithm, called DeepSymNet learned to identify these blockages from the CT angiogram images, and trained the software to use those same images to define the area of brain that had died, using concurrent acquired CT perfusion scans as the "gold standard."

"The advantage is you don't have to be at an academic health center or a tertiary care hospital to determine whether this treatment would benefit the patient. And best of all, CT angiogram is already widely used for patients with stroke," said Sunil A. Sheth, MD, corresponding author and assistant professor of neurology with McGovern Medical School at UT Health.

Related Links:
University of Texas Health Science Center

Radiation Safety Barrier
RayShield Intensi-Barrier
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
Portable X-ray Unit
AJEX140H
Ultrasound Table
Women’s Ultrasound EA Table

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.