We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

First-Ever Breast Cancer AI for Mammography Scans Shows How It Comes To Conclusions

By MedImaging International staff writers
Posted on 27 Jan 2022
Print article
Illustration
Illustration

A new artificial intelligence (AI) tool for mammography scans aims to aid rather than replace human decision-making.

Computer engineers and radiologists at Duke University (Durham, NC, USA) have developed an AI platform to analyze potentially cancerous lesions in mammography scans to determine if a patient should receive an invasive biopsy. But unlike its many predecessors, this algorithm is interpretable, meaning it shows physicians exactly how it came to its conclusions.

The researchers trained the AI to locate and evaluate lesions just like an actual radiologist would be trained, rather than allowing it to freely develop its own procedures, giving it several advantages over its “black box” counterparts. It could make for a useful training platform to teach students how to read mammography images. It could also help physicians in sparsely populated regions around the world who do not regularly read mammography scans make better health care decisions.

The researchers trained the new AI with 1,136 images taken from 484 patients at Duke University Health System. They first taught the AI to find the suspicious lesions in question and ignore all of the healthy tissue and other irrelevant data. Then they hired radiologists to carefully label the images to teach the AI to focus on the edges of the lesions, where the potential tumors meet healthy surrounding tissue, and compare those edges to edges in images with known cancerous and benign outcomes. Radiating lines or fuzzy edges, known medically as mass margins, are the best predictor of cancerous breast tumors and the first thing that radiologists look for. This is because cancerous cells replicate and expand so fast that not all of a developing tumor’s edges are easy to see in mammograms.

After training was complete, the researches put the AI to the test. While it did not outperform human radiologists, it did just as well as other black box computer models. When the new AI is wrong, people working with it will be able to recognize that it is wrong and why it made the mistake. Moving forward, the team is working to add other physical characteristics for the AI to consider when making its decisions, such as a lesion’s shape, which is a second feature radiologists learn to look at.

“This is a unique way to train an AI how to look at medical imagery,” said Alina Barnett, a computer science PhD candidate at Duke and first author of the study. “Other AIs are not trying to imitate radiologists; they’re coming up with their own methods for answering the question that are often not helpful or, in some cases, depend on flawed reasoning processes.”

Related Links:
Duke University


Print article
Radcal
CIRS -  MIRION

Channels

Radiography

view channel
Image: Spinal fractures in the elderly are preventable with simple X-rays (Photo courtesy of Pexels)

Simple X-Ray Method Can Diagnose Vertebral Compression and Prevent Spinal Fractures

Vertebral compression means that the spine is compressed, causing a fracture in one of the vertebrae. Vertebral compression fractures (VCFs) occur easily in people with osteoporosis and are very common... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: RSNA`s annual meeting is the world`s largest medical imaging conference (Photo courtesy of RSNA)

RSNA 2022 Sees Rise in Abstract Submissions Ahead of Annual Meeting

The Radiological Society of North America (RSNA, Oak Brook, IL, USA) has announced that nearly 10,400 scientific and educational abstracts have been submitted for the Society's 108th Scientific Assembly... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.