We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

Radioembolization Microspheres Treat Hepatocellular Carcinoma

By MedImaging International staff writers
Posted on 29 Mar 2021
Print article
Image: A vial of TheraSphere contains millions of microscopic glass beads containing yttrium (Photo courtesy of Boston Scientific)
Image: A vial of TheraSphere contains millions of microscopic glass beads containing yttrium (Photo courtesy of Boston Scientific)
A selective internal radiation therapy (SIRT) platform delivers radioactive glass microspheres directly to liver tumors, with minimal exposure to surrounding healthy tissue.

Boston Scientific (Natick, MA, USA) TheraSphere treatment is a low toxicity SIRT comprised of millions of microscopic glass beads containing yttrium (Y-90) that are delivered to a Hepatocellular Carcinoma (HCC) through a catheter placed into the hepatic artery, which provides the main blood supply to the HCC. The microspheres, which are unable to traverse the tumor vasculature, are embolized within the tumor, exerting a local beta radiation radiotherapeutic effect, as the average range of the radiation in tissue is 2.5 mm, with a maximum range less than one centimeter.

TheraSphere is available in three dose sizes, each supplied with an administration set consisting of a single use, pre-assembled vial with inlet and outlet lines that facilitate infusion of the microspheres to the catheter. Each milligram of TheraSphere contains between 22,000 and 73,000 microspheres of Y-90. The treatment does not require hospitalization, and is typically performed as an outpatient procedure in as little as an hour. TheraSphere has been approved by the FDA after almost 20 years of humanitarian exemption device (HDE).

“The FDA approval will expand access to TheraSphere, which has demonstrated improvement in both survivability and quality of life through 20 years of clinical trials and real-world outcomes in the more than 70,000 patients globally,” said Peter Pattison, president of interventional oncology and peripheral interventions at Boston Scientific. “We expect to continue to focus our efforts on bringing this treatment to more patients, as well as further investigating the therapy for different cancer segments, including prostate and brain.”

As healthy liver tissue is mainly perfused by the portal vein, and most liver malignancies derive their blood supply from the hepatic artery, trans-arterial radioembolization (TARE) using radioactive Yttrium radioactive glass microspheres can be selectively administered to the tumors. The microspheres lodge in the small vessels of the tumor (embolization), emitting localized RT to targeted segments, results in tissue necrosis. The Y-90, with a half-life of 3.85 days, decays to Zirconium-90.

Related Links:
Boston Scientific

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
Pocket Fetal Doppler
CONTEC10F
New
Ultrasound Probe Covers
Intuit
New
POC Ultrasound System
Acclarix AX3

Print article
CIRS -  MIRION

Channels

MRI

view channel
Image: BlueSeal magnet for helium-free MR operations (Photo courtesy of Philips)

Use of High-Temperature Superconductors to Make MR Imaging More Affordable, Accessible and Sustainable

A new research partnership focuses on the use of high-temperature superconductors to make MR imaging more affordable, accessible and sustainable in the future. Operating at higher temperatures and eliminating... Read more

Ultrasound

view channel
Image: A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without surgery (Photo courtesy of Tel Aviv University)

Ultrasound Combined With Nanobubbles Enables Removal of Tumors Without Surgery

The prevalent method of cancer treatment is surgical removal of the tumor, in combination with complementary treatments such as chemotherapy and immunotherapy. Therapeutic ultrasound to destroy the cancerous... Read more

General/Advanced Imaging

view channel
Image: Ultra-high-resolution photon-counting CT reveals bronchiolectasis (Photo courtesy of Medical University of Vienna)

Photon-Counting CT Shows More Post-COVID-19 Lung Damage

Photon-counting detector (PCD) CT has emerged in the last decade as a promising imaging tool. It works by converting X-ray photons directly into an electrical signal. This avoids the intermediate step... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.