We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




4D Blood Flow MRI Technology Detects Aortic Disease and May Predict Complications

By MedImaging International staff writers
Posted on 24 Feb 2014
Print article
Image: 4D flow MRI used to enhance heart disease prediction capabilities (Photo courtesy of Northwestern University Feinberg School of Medicine).
Image: 4D flow MRI used to enhance heart disease prediction capabilities (Photo courtesy of Northwestern University Feinberg School of Medicine).
A new imaging technique developed for measuring blood flow in the heart and vessels has been shown to identify a common congenital heart abnormality, bicuspid aortic valve, and may lead to better prediction of complications. 

The investigators published their findings February 11, 2014, in the journal Circulation, and demonstrated for the first time a previously unknown connection between heart valve abnormalities, blood flow alterations in the heart, and aortic disease. They revealed that blood flow changes were fueled by specific types of abnormal aortic valves, and they were able to tie blood flow patterns to aortic diseases directly. 

“Blood flow in patients with bicuspid aortic valves was significantly different compared to that in patients with normal valves,” said senior author Dr. Michael Markl, associate professor of radiology at Northwestern University Feinberg School of Medicine (Chicago, IL, USA). “We now have direct evidence that bicuspid valves induce changes in blood flow and that the type of flow abnormality may contribute to the development of different expressions of heart disease in these patients.” 

A Bicuspid aortic valve is a most common congenital cardiovascular abnormality, a heart disorder in which the aortic valve only has two leaflets, instead of the normal three. In spite of absence of symptoms, it can lead to significant and potentially life-threatening complications, including enlargement of the blood vessel, which results in aneurysm formation and rupture. However, it is not known which patients are at the highest risk for complications and whether the disorder’s origin is genetic or associated with changes in blood flow. 

The four-dimensional (4D) flow magnetic resonance imaging (MRI) technology used in the study can provide better predictive ability. “The study demonstrated that new imaging techniques may help to determine patient-specific changes in blood flow to better understand which regional areas of the aorta are most prone to developing disease,” Dr. Markl said. “In addition, the knowledge of abnormal blood flow patterns could be important to better identify patients at risk for the development of heart disease.” 

The researchers were amazed to see such an obvious distinction between different expressions of aortic complications for different types of congenital valve disease. Whereas these new findings show evidence of this relationship, long-term observational studies are required, according to the investigators, for a better determination of the potential of 4D flow MRI to enhance disease prediction capabilities. 

A longitudinal follow-up study of bicuspid aortic valve patients is ongoing at Northwestern. “Ultimately, we hope that this imaging technique will facilitate early identification of high-risk blood flow patterns associated with progressive aortic enlargement, improving the allocation of health care resources in caring for patients with this prevalent condition,” Dr. Markl concluded.

Related Links:

Northwestern University Feinberg School of Medicine
 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
Voluson Signature 18
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Wireless Handheld Ultrasound System
TE Air

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.