We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
CIRS

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Novel Biomaterial Protects Tissues Against Harmful Radiation

By MedImaging International staff writers
Posted on 23 Jul 2020
Print article
Image: Human cells treated with Selenomelanin nanoparticles (Photo courtesy of NU)
Image: Human cells treated with Selenomelanin nanoparticles (Photo courtesy of NU)
A synthesized form of melanin enriched with selenium could shield human tissues from X-rays during medical treatment or spaceflight, according to a new study.

Developed at Northwestern University (NU; Evanston, IL, USA), the University of California, San Diego (UCSD; USA), and other institutions, the new material is called Selenomelanin, and is an analogue of pheomelanin (the pigment responsible for red hair, which contains sulfur), that has been shown to absorb X-rays more efficiently than the more common eumelanin, which gives black and brown hair their color. The researchers hypothesized that enriching pheomelanin with selenium instead of sulfur would provide better protection against X-rays.

After synthesizing Selenomelanin, they then used it to treat neonatal human epidermal keratinocytes (NHEK); for comparison, they prepared cells treated with synthetic pheomelanin and eumelanin, as well as cells with no protective melanin at all. All cells were subjected to high-dose X-ray irradiation, at levels that would be lethal to a human being. They found that only those cells treated with Selenomelanin still exhibited a normal cell cycle, and did not undergo G2/M phase arrest. The study was published on July 8, 2020, in the Journal of the American Chemical Society (JACS).

“Melanin may act as a repository for selenium, helping ensure that organisms benefit from it. Our results demonstrated that selenomelanin offers superior protection from radiation,” said senior author Nathan Gianneschi, PhD, of NU. “We also found that it was easier to synthesize selenomelanin than pheomelanin, and what we created was closer than synthetic pheomelanin to the melanin found in nature. Selenomelanin may play an important role in how selenium is metabolized and distributed biologically. It's an area for further investigation.”

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional, structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin.

Related Links:
Northwestern University
University of California, San Diego



Print article
Radcal
Sun Nuclear

Channels

Radiography

view channel
Image: CE-marked and FDA-cleared ExacTrac Dynamic enables the delivery of precision radiotherapy (Photo courtesy of Brainlab)

Next-Gen Technology Enables Precision Radiotherapy with “On-The-Fly” X-Ray Confirmation

Deep Inspiration Breath Hold (DIBH) is a well-established technique and standard of care in treating breast cancer with radiation therapy. When a patient takes a deep breath, the distance between the heart... Read more

MRI

view channel
Image: fMRI can be used as non-invasive method for predicting complications in chronic liver disease (Photo courtesy of Pexels)

Functional MRI (fMRI) Offers Non-Invasive Method for Risk Assessment in Liver Disease

In a recent study, a team of scientists has shown that functional magnetic resonance imaging (fMRI) can be used as a non-invasive method for predicting complications in chronic liver disease.... Read more

Ultrasound

view channel
Image: Resona I9 ultrasound system features innovative design elements (Photo courtesy of Mindray)

Mindray’s Latest Resona I9 Ultrasound System Provides Innovation-Driven Experience

Mindray (Shenzhen, China) has launched a new ultrasound system which provides an entirely new experience, driven by innovation to address today’s clinical challenges. Mindray’s latest Resona I9 ultrasound... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: Global diagnostic imaging market is driven by technological advancements (Photo courtesy of Pexels)

Global Diagnostic Imaging Market to Surpass USD 33 Billion by 2026

The global diagnostic imaging market is one of the most critical segments of the healthcare sector. Medical imaging helps in early detection and diagnosis of diseases at a stage when they can be easily... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.