We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

Flash RT Could Deliver Radiation Dosage Within One Second

By MedImaging International staff writers
Posted on 21 Jan 2020
Print article
A new study details how proton radiation can be used to theoretically give a cancer patient their entire course of radiotherapy (RT) in one rapid treatment.

Developed by researchers at the University of Pennsylvania (Penn; Philadelphia, USA), ultrahigh-dose-rate (FLASH) proton RT can deliver an entire radiation dose in an extremely short time span via double scattered protons and computed tomography (CT) guidance. Using a mouse model of pancreatic tumors, the effect of FLASH RT versus standard dose rate RT on both tumors and normal tissue was measured using pancreatic flank tumors in syngeneic C57BL/6J mice, with analysis of fibrosis and stem cell repopulation in the small intestine after abdominal irradiation.

The results showed that whole abdominal FLASH proton RT at 15 Gy significantly reduced the loss of proliferating cells in intestinal crypts, compared with standard proton RT. Studies with local intestinal irradiation at 18 Gy revealed a reduction to near baseline levels of intestinal fibrosis, compared with standard proton RT. The researchers also found that FLASH proton RT spared healthy tissue. The study was published in the February 2020 issue of the International Journal of Radiation Oncology, Biology, and Physics.

“We've been able to develop specialized systems to generate FLASH doses, demonstrate that we can control the proton beam, and perform a large number of experiments to help us understand the implications of FLASH radiation that we simply could not have done with a more traditional research setup,” said co-senior author James Metz, MD, director of the Penn Roberts Proton Therapy Center. “Using this system, we found that FLASH proton RT decreases acute cell loss and late fibrosis after whole-abdomen and focal intestinal RT, whereas tumor growth inhibition is preserved between the two modalities.”

FLASH RT involves the ultra-fast delivery of radiation at dose rates several orders of magnitude greater than those currently in routine clinical practice. In order to eradicate tumors, all cancerous cells must be killed, with normal tissue being spared from radiation damage as much as possible. Ultra-fast dose rates allow normal tissue tolerance levels to be exceeded, at least in animal models, with a greater probability of tumor control and little normal tissue damage. One mechanism suggested is that FLASH consumes all available oxygen and liberates significantly more electrons, resulting in many more ionization events than at conventional dose rates.

Related Links:
University of Pennsylvania

Print article



view channel
Image: Hyperpolarized MRI technology reveals changes in heart muscle’s sugar metabolism after heart attack (Photo courtesy of ETH Zurich)

MRI Technology to Visualize Metabolic Processes in Real Time Could Improve Heart Disease Diagnosis

Magnetic resonance imaging (MRI) has become an indispensable part of medicine. It allows unique insights into the body and diagnosis of various diseases. However, current MRI technology has its limitations:... Read more


view channel
Image: A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without surgery (Photo courtesy of Tel Aviv University)

Ultrasound Combined With Nanobubbles Enables Removal of Tumors Without Surgery

The prevalent method of cancer treatment is surgical removal of the tumor, in combination with complementary treatments such as chemotherapy and immunotherapy. Therapeutic ultrasound to destroy the cancerous... Read more

General/Advanced Imaging

view channel
Image: AI tool predicts reduced blood flow to the heart (Photo courtesy of Pexels)

AI Tool Uses CT Scans to Identify Patients at Risk of Reduced Blood Flow to the Heart

Blockages of the coronary arteries typically occur due to the buildup of fatty plaques. This may restrict blood flow to the heart, causing chest pain, heart attacks, or even death. Identifying which arteries... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.