We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Super-Powerful MRI Merged With Light-Sheet Microscopy Provides 64 Million Times Sharper Brain Images

By MedImaging International staff writers
Posted on 19 Apr 2023
Print article
Image: MRI technology reveals the entire mouse brain in the highest resolution (Photo courtesy of Duke University)
Image: MRI technology reveals the entire mouse brain in the highest resolution (Photo courtesy of Duke University)

MRI technology is utilized to visualize soft, water-rich tissues that are difficult to image using X-rays. Although conventional MRI can detect brain tumors, higher resolution is required to observe the microscopic details within the brain that reveal its organization. In a groundbreaking achievement coinciding with the first MRI's 50th anniversary, researchers have now significantly enhanced MRI resolution, resulting in the clearest images of a mouse brain ever captured.

In decades-long research efforts led by Duke University (Durham, NC, USA), the investigators have produced scans of a mouse brain that are substantially clearer than those of a standard human clinical MRI, comparable to transitioning from pixelated 8-bit graphics to the hyper-realistic detail of a Chuck Close painting. A single voxel in these new images, which can be thought of as a cubic pixel, is only 5 microns in size - 64 million times smaller than a clinical MRI voxel. While the research focused on mice rather than humans, the improved MRI offers a groundbreaking method to visualize the entire brain's connectivity at unparalleled resolution. The researchers believe that the insights gained from mouse imaging will ultimately contribute to a better understanding of human conditions, such as age-related brain changes, dietary impacts, or neurodegenerative diseases like Alzheimer's.

This groundbreaking achievement is the result of nearly 40 years of research. Over these decades, the researchers have refined numerous elements that, when combined, enable the revolutionary MRI resolution. Key components include an incredibly powerful magnet (9.4 Tesla, compared to 1.5 to 3 Tesla in most clinical MRIs), a set of gradient coils 100 times stronger than those in clinical MRIs for generating brain images, and a high-performance computer with the processing power of nearly 800 laptops working simultaneously to image a single brain. After extensively scanning the tissue, it is then imaged using light sheet microscopy, a complementary technique that allows for labeling specific groups of cells throughout the brain, such as those related to Parkinson's disease progression.

The researchers map the light sheet images, which offer a highly precise view of brain cells, onto the original MRI scan, known for its anatomical accuracy and detailed visualization of cells and circuits across the entire brain. This combined whole-brain data imagery allows scientists to explore the brain's microscopic intricacies in unprecedented ways. One set of MRI images reveals how brain-wide connectivity alters with aging in mice and how specific regions, such as the memory-related subiculum, change more than other parts of the brain. Another set of images displays a spectrum of brain connections that emphasize the significant deterioration of neural networks in a mouse model of Alzheimer's disease. By transforming the MRI into an even more powerful microscope, researchers hope to gain a better understanding of mouse models for human diseases, including Huntington's, Alzheimer's, and others. This knowledge should ultimately lead to a deeper comprehension of how similar processes function or malfunction in humans.

“It is something that is truly enabling. We can start looking at neurodegenerative diseases in an entirely different way,” said G. Allan Johnson, Ph.D., the lead author of the new paper and the Charles E. Putman University Distinguished professor of radiology, physics and biomedical engineering at Duke.

Related Links:
Duke University 

New
Gold Supplier
Conductive Gel
Tensive
New
Silver Supplier
Field Calibration Instrument
DAPcheck Plus
New
Premium Ultrasound System
RS85 Prestige
New
Multipurpose Radiography System
NeuVision 460

Print article
FIME - Informa

Channels

Radiography

view channel
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)

Sustainable Solar Cell Material Could Revolutionize Medical Imaging

The use of X-rays for internal body imaging has dramatically changed non-invasive medical diagnostics. Yet, the high dose of X-rays required for these imaging techniques, due to the poor performance of... Read more

Ultrasound

view channel
Image: Attaching microbubbles to macrophages can create high-resolution and sensitive tracking images useful for disease diagnosis (Photo courtesy of Georgia Institute of Technology)

Ultrasound Can Image Immune Cells Enhanced With Microbubbles to Diagnose Early Stage Cancer

Macrophages, a type of white blood cell, protect the human body by surrounding and consuming foreign particles such as bacteria, viruses, and dead cells. Notably, these immune cells tend to gather within... Read more

Nuclear Medicine

view channel
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

New Imaging Method Superior for Diagnosing Multiple Types of Cancer

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.