We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Artificial Intelligence Algorithm Boosts Quality of Brain Magnetic Resonance Imaging

By MedImaging International staff writers
Posted on 19 Feb 2020
Image: Artificial intelligence to improve resolution of brain magnetic resonance imaging (Photo courtesy of University of Malaga)
Image: Artificial intelligence to improve resolution of brain magnetic resonance imaging (Photo courtesy of University of Malaga)
Researchers from the ICAI Group – Computational Intelligence and Image Analysis – of the University of Malaga (Málaga, Spain) have designed a method that is capable of improving brain images obtained through magnetic resonance imaging using artificial intelligence (AI). The new model manages to increase image quality from low resolution to high resolution without distorting the patients' brain structures, using a deep learning artificial neural network – a model based on the functioning of the human brain – that "learns" this process.

The algorithm developed by the UMA yields more accurate results in less time, with clear benefits for patients. The technique allows the activity of identification to be performed alone, without supervision; an identification effort that the human eye would be incapable of doing. According to the researchers, the results will enable specialists to identify brain-related pathologies, such as physical injuries, cancer or language disorders, among others, with increased accuracy and definition, as the image details are thinner, thus eliminating the need for performing additional tests when diagnoses are uncertain.

"Deep learning is based on very large neural networks, and so is its capacity to learn, reaching the complexity and abstraction of a brain," said researcher Karl Thurnhofer, main author of the study. "So far, the acquisition of quality brain images has depended on the time the patient remained immobilized in the scanner; with our method, image processing is carried out later on the computer."


Related Links:
University of Malaga

New
High-Precision QA Tool
DEXA Phantom
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Multi-Use Ultrasound Table
Clinton
Digital X-Ray Detector Panel
Acuity G4

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.