We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




First-Ever Breast Cancer AI for Mammography Scans Shows How It Comes To Conclusions

By MedImaging International staff writers
Posted on 27 Jan 2022
Print article
Illustration
Illustration

A new artificial intelligence (AI) tool for mammography scans aims to aid rather than replace human decision-making.

Computer engineers and radiologists at Duke University (Durham, NC, USA) have developed an AI platform to analyze potentially cancerous lesions in mammography scans to determine if a patient should receive an invasive biopsy. But unlike its many predecessors, this algorithm is interpretable, meaning it shows physicians exactly how it came to its conclusions.

The researchers trained the AI to locate and evaluate lesions just like an actual radiologist would be trained, rather than allowing it to freely develop its own procedures, giving it several advantages over its “black box” counterparts. It could make for a useful training platform to teach students how to read mammography images. It could also help physicians in sparsely populated regions around the world who do not regularly read mammography scans make better health care decisions.

The researchers trained the new AI with 1,136 images taken from 484 patients at Duke University Health System. They first taught the AI to find the suspicious lesions in question and ignore all of the healthy tissue and other irrelevant data. Then they hired radiologists to carefully label the images to teach the AI to focus on the edges of the lesions, where the potential tumors meet healthy surrounding tissue, and compare those edges to edges in images with known cancerous and benign outcomes. Radiating lines or fuzzy edges, known medically as mass margins, are the best predictor of cancerous breast tumors and the first thing that radiologists look for. This is because cancerous cells replicate and expand so fast that not all of a developing tumor’s edges are easy to see in mammograms.

After training was complete, the researches put the AI to the test. While it did not outperform human radiologists, it did just as well as other black box computer models. When the new AI is wrong, people working with it will be able to recognize that it is wrong and why it made the mistake. Moving forward, the team is working to add other physical characteristics for the AI to consider when making its decisions, such as a lesion’s shape, which is a second feature radiologists learn to look at.

“This is a unique way to train an AI how to look at medical imagery,” said Alina Barnett, a computer science PhD candidate at Duke and first author of the study. “Other AIs are not trying to imitate radiologists; they’re coming up with their own methods for answering the question that are often not helpful or, in some cases, depend on flawed reasoning processes.”

Related Links:
Duke University

Gold Supplier
128 Slice CT Scanner
Supria 128
Gold Supplier
Conductive Gel
Tensive
New
Portable DR Flat Panel Detector
VIVIX-S 1012N
New
CT System
Aquilion Lightning 80

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: Radiologists outperformed AI in identifying lung diseases on chest X-ray (Photo courtesy of RSNA)

Radiologists Beat AI in Detecting Common Lung Diseases on Chest X-Rays

Chest X-rays are frequently used for diagnosis, but it takes a lot of training and expertise to read these images correctly. Although the Food and Drug Administration (FDA) has approved some artificial... Read more

Ultrasound

view channel
Image: The new device targets ultrasound waves to precise spots in the brain (Photo courtesy of WUSTL)

Anatomically Precise Ultrasound-Based Technique to Enable Noninvasive Biopsies for Brain Tumors

The blood-brain barrier serves as a protective wall, keeping the brain safe from harmful elements like viruses and toxins in the blood. This makes it challenging for doctors to obtain molecular and genetic... Read more

Nuclear Medicine

view channel
Image: Imaging entire body instead of only the primary cancer site can provide a total estimate of HER2 expression (Photo courtesy of 123RF)

Whole-Body PET/CT Predicts Response to HER2-Targeted Therapy in Metastatic Breast Cancer Patients

Around 20% of women diagnosed with breast cancer show overexpression of human epidermal growth factor receptor 2 (HER2), making it a key therapy target for new as well as recurring cases.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The partnership combines best-in-class AI-powered technologies for musculoskeletal imaging workflows (Photo courtesy of ImageBiopsy Lab)

AI-Powered Technologies to Aid Interpretation of X-Ray and MRI Images for Improved Disease Diagnosis

Musculoskeletal (MSK) conditions impact more people worldwide than issues related to the circulatory or respiratory systems. Even so, diagnostic procedures for these conditions often still lean on outdated... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.