We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging Technique Helps Safer and More Effective Removal of Brain Tumors

By MedImaging International staff writers
Posted on 15 Jul 2015
Image: Illustration of a new technique using Optical Coherence Tomography that could help surgeons differentiate a human brain tumor, red, from surrounding noncancerous tissue, green (Photo courtesy of  Carmen Kut, Jordina Rincon-Torroella, Xingde Li and Alfredo Quinones-Hinojosa/Johns Hopkins Medicine).
Image: Illustration of a new technique using Optical Coherence Tomography that could help surgeons differentiate a human brain tumor, red, from surrounding noncancerous tissue, green (Photo courtesy of Carmen Kut, Jordina Rincon-Torroella, Xingde Li and Alfredo Quinones-Hinojosa/Johns Hopkins Medicine).
Researchers at the Johns Hopkins University have demonstrated a new imaging technology that could enable neurosurgeons to better differentiate between healthy and cancerous brain tissue and perform safer and more effective neurosurgery procedures.

The technology, called Optical Coherence Tomography (OCT), uses visible light echolocation imaging to create higher-resolution images than is possible with ultrasound. OCT produces a color-coded map of a patient’s brain that shows which areas are and which are not cancer. Unlike X-ray, Computed Tomography (CT) scans or Positron Emission Tomography (PET) scans, OCT is safer for patients because it has no ionizing radiation.

A summary of the research was published in the June, 17, 2015 issue of the journal Science Translational Medicine. The researchers discovered that cancer cells in the brain lack the myelin sheaths found in healthy brain cells. The researchers used the characteristic OCT “signature” of brain tumors and developed a computer algorithm that could process that data automatically and generate a color-coded map with cancerous tissue in red, and healthy areas in green.

The researchers conducted the research using human brain tissue, and mice, and plan to begin human clinical trials in Summer 2015.

If successful, OCT would be a significant step forward in brain cancer imaging, and could provide live feedback from the area being operated on, showing where the cancer is located. In comparison, ultrasound has a much lower resolution, and Magnetic Resonance Imaging (MRI) scanners are more expensive, bulky, and take longer to operate.

The system could also potentially be adapted to detect cancers in other parts of the body, for example to help surgeons visualize and avoid damaging vulnerable blood vessels during surgery.

Alfredo Quinones-Hinojosa, MD, a professor of neurosurgery, neuroscience and oncology at the Johns Hopkins University School of Medicine (Baltimore, MD, USA), clinical leader of the research team, said, “As a neurosurgeon, I’m in agony when I’m taking out a tumor. If I take out too little, the cancer could come back; too much, and the patient can be permanently disabled. We think optical coherence tomography has strong potential for helping surgeons know exactly where to cut.”

Related Links:

John Hopkins School of Medicine


X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultra-Flat DR Detector
meX+1717SCC
Wall Fixtures
MRI SERIES
New
Half Apron
Demi

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.