We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Photoacoustic Imaging Optimizes Visualization of Cancerous Tissues Using Time Reversal Technology

By MedImaging International staff writers
Posted on 19 Nov 2014
Unique time-reversal technology is being used to better focus light in tissue, such as muscles and organs. Current high-resolution optical imaging technology allows researchers to see about 1-mm-deep into the body. In an effort to enhance this imaging technology, the investigators are employing photoacoustic imaging, which combines light with acoustic waves (sound), to form a clearer image, even several centimeters into the skin.

Washington University in St. Louis (MO, USA) engineers are using the photoacoustic approach to monitor the movement inside the body’s tissues to improve imaging of cancerous tissues and to develop potential treatments. Lihong Wang, PhD, a professor of biomedical engineering at the School of Engineering & Applied Science, is the lead investigator.

Beyond 1 mm into the body, the light scatters and obscures the features, which is why one cannot see bones or tissue in the hand with a flashlight. To overcome this, the engineers used photoacoustic imaging, and published their findings online November 2, 2014, in the journal Nature Photonics. The new technology, called time-reversed adapted-perturbation (TRAP) optical focusing, sends guiding light into tissue to seek movement. The light that has traversed stationary tissue appears differently than light that has moved through something moving, such as blood. By taking two consecutive images, they can subtract the light through stationary tissue, keeping only the scattered light due to motion. Then, they send that light back to its original source via a process called time-reversal so that it becomes focused once back in the tissue.

“This can potentially be used in imaging or therapy,” Dr. Wang said. “For example, focusing pulsed light on port wine stains, which are excessive growth of blood vessels, could remove the stains without damaging the surrounding normal skin.”

In 2011, Dr. Wang’s lab was the first to use ultrasound focusing to provide a virtual, noninvasive internal guide star that allowed them to focus on anything moving in tissue. But TRAP focusing is much more effective in tracking moving targets, according to Dr. Wang. TRAP focusing can enhance and contrast by redistributing and concentrating light on the targets, allowing for images to be captured from greater depths.

Related Links:

Washington University in St. Louis



New
Diagnostic Ultrasound System
DC-80A
Portable Color Doppler Ultrasound Scanner
DCU10
Radiology Software
DxWorks
Multi-Use Ultrasound Table
Clinton

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.