Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Quantitative Ultrasound Shown to Optimize Assessment of Long Bone Fracture

By Medimaging International staff writers
Posted on 27 Aug 2014
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Research has revealed that mode conversion of ultrasonic-guided waves can quantitatively indicate the fracture degree of long cortical bone, which may provide a new way of evaluating long bone fracture and monitor healing.

This study was published July 24, 2014, in the journal SCIENCE CHINA Physica, Mechanica & Astronomica. Prof. T.A. De-an, from School of Information Science and Technology at Fudan University (Shanghai, China) led the study, which quantitatively analyzed the impact of fracture width and depth on the amplitude of guided waves.

Bone fracture is a medical disorder in which bone discontinuity is created by stresses higher than the bone can bear. Statistical studies show that 5%–10% of the fractured patients are suffering healing complications. Fracture healing is a proliferative process, and full recovery can take up to three to five years. The pathology in the healing process is easily overlooked, leading to severe bone loss and secondary damage, impacting the physical condition of the patients. Therefore, early diagnosis of the healing problem is key to ensure the healing process. The accurate diagnosis and dynamic monitoring are essential for prompt treatment.

With the advantages of quantitative ultrasound (QUS), such as portability, inexpensive, and nonionizing radiation, ultrasonic guided waves can also detect the geometry of long cortical bone, (e.g., profile, thickness, and section) and measure the material parameters (e.g., BMD, porosity and Young’s modulus), which has attracted increasing attention. However, due to the little understood nature of ultrasound propagation in long cortical bones, ultrasonic-guided wave technology has not been widely applied to the clinical practice of the long bone fracture evaluation.

Numeric simulations are performed to analyze the guided waves propagation in the fractured long bone. The novelty of this study is the use of narrowband low-frequency ultrasound to avoid the multimode overlap. Only two fundamental guided modes, symmetric S0 and asymmetric A0, are excited, which simplifies the mode separation and quantitative determination. The impact of fracture width and depth on the amplitudes of each guided modes were quantitatively discussed in the article. The amplitude of the A0 mode is very sensitive to the width and depth variation. The ratio between the amplitudes of S0 and A0 is further proposed to be used in the evaluation of the fracture degree.

The mode conversion of the ultrasonic-guided waves can, therefore, characterize the changes in the fracture depth and fracture width and provide quantitative parameters fracture evaluation. The study may also be helpful to the ultrasound monitoring of long bone healing, according to the researchers.

Related Links:

Fudan University



view channel
Image: Multimodal CT images obtained 2 hours 18 minutes after symptom onset in an 87-year-old woman with an NIH Stroke Scale of 15 and left hemisphere symptoms (Photo courtesy of Radiology 2015:257;2;510-520, and RSNA 2015).

Faster and Simpler Treatment for Stroke Patients Using Multiphase CT

The results of a new study show that multiphase Computed Tomography (CT) angiography brain-imaging could enable clinicians to treat Acute Ischemic Stroke (AIS) patients faster, and better, potentially saving lives.... Read more


view channel

Preventing Unnecessary Breast Biopsies Using MRI

The results of a new study have shown that a new Magnetic Resonance (MR) breast imaging technique could prevent unnecessary biopsies. The new technique, called Diffusion-Weighted Imaging with Background Suppression Magnetic Resonance Mammography (DWIBS-MRM), can be used to assess the diffusion of water molecules within tissue.... Read more

Nuclear medicine

view channel
Image: The whole body of a rat can be imaged for blood clots with one PET scan, overlaid here on an MRI image, using the FBP8 probe. The arrow points to a blood clot (Photo courtesy of the American Chemical Society).

Single PET Scan Could Replace Multiple Modalities in Detecting Blood Clots

Researchers have presented an experimental technique that could be used to discover blood clots using a single, fast, whole-body scan, at the 250th National Meeting and Exposition of the American Chemical... Read more

General/Advanced Imaging

view channel

Leading Vendor to Implement and Install Enterprise Imaging Platform for UK NHS

An agreement has been announced by a leading imaging platform provider for the implementation of the first Enterprise Imaging platform, part of a long-term agreement for the management of imaging data, for the UK City Hospitals Sunderland NHS Foundation Trust. The agreement covers the capture, storage, and exchange of... Read more

Imaging IT

view channel

Carestream Updates Healthcare IT Platform

Carestream has released updates for an advanced Internet Technology (IT) healthcare platform at the Röntgenveckan Radiology congress in Malmo (Sweden). The IT platform facilitates collaboration by enabling sharing of critical patient information such as Radiology images, videos, reports, and services with groups outside... Read more

Industry News

view channel

Study Predicts Increasing Demand for Portable Ultrasound Systems in Emerging Clinical Point-of-Care Settings

The mature ultrasound market in the US, Europe and elsewhere is being revitalized by new portable applications and portable solutions for new clinical points of care. Ultrasound is becoming the modality of choice because of its safety, cost effectiveness, accessibility, and portability. New point of care applications... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.