Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Schiller
Ampronix

Quantitative Ultrasound Shown to Optimize Assessment of Long Bone Fracture

By Medimaging International staff writers
Posted on 27 Aug 2014
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Research has revealed that mode conversion of ultrasonic-guided waves can quantitatively indicate the fracture degree of long cortical bone, which may provide a new way of evaluating long bone fracture and monitor healing.

This study was published July 24, 2014, in the journal SCIENCE CHINA Physica, Mechanica & Astronomica. Prof. T.A. De-an, from School of Information Science and Technology at Fudan University (Shanghai, China) led the study, which quantitatively analyzed the impact of fracture width and depth on the amplitude of guided waves.

Bone fracture is a medical disorder in which bone discontinuity is created by stresses higher than the bone can bear. Statistical studies show that 5%–10% of the fractured patients are suffering healing complications. Fracture healing is a proliferative process, and full recovery can take up to three to five years. The pathology in the healing process is easily overlooked, leading to severe bone loss and secondary damage, impacting the physical condition of the patients. Therefore, early diagnosis of the healing problem is key to ensure the healing process. The accurate diagnosis and dynamic monitoring are essential for prompt treatment.

With the advantages of quantitative ultrasound (QUS), such as portability, inexpensive, and nonionizing radiation, ultrasonic guided waves can also detect the geometry of long cortical bone, (e.g., profile, thickness, and section) and measure the material parameters (e.g., BMD, porosity and Young’s modulus), which has attracted increasing attention. However, due to the little understood nature of ultrasound propagation in long cortical bones, ultrasonic-guided wave technology has not been widely applied to the clinical practice of the long bone fracture evaluation.

Numeric simulations are performed to analyze the guided waves propagation in the fractured long bone. The novelty of this study is the use of narrowband low-frequency ultrasound to avoid the multimode overlap. Only two fundamental guided modes, symmetric S0 and asymmetric A0, are excited, which simplifies the mode separation and quantitative determination. The impact of fracture width and depth on the amplitudes of each guided modes were quantitatively discussed in the article. The amplitude of the A0 mode is very sensitive to the width and depth variation. The ratio between the amplitudes of S0 and A0 is further proposed to be used in the evaluation of the fracture degree.

The mode conversion of the ultrasonic-guided waves can, therefore, characterize the changes in the fracture depth and fracture width and provide quantitative parameters fracture evaluation. The study may also be helpful to the ultrasound monitoring of long bone healing, according to the researchers.

Related Links:

Fudan University



Channels

Radiography

view channel
Image: The AeroDR Premium is an extremely light cassette-type digital radiography detector with improved strength (Photo courtesy of Konica Minolta).

Cassette-Type Digital Radiography Detector Designed to Reduce Waiting Times

Key features of a new cassette-type digital radiography (DR) system includes an extremely light weight of 2.6 kg; improved load resistance and drop impact resistance; and reduced waiting time due to shortened... Read more

MRI

view channel
Image: MagLab’s 900 MHz magnet (Photo courtesy of FSU – Florida State University).

High Magnetic Field MRI Technology Provides Comprehensive Analysis of Strokes

A new, novel way to categorize the severity of a stroke, help in diagnosis, and assesse potential treatments has been demonstrated by US researchers. “Stroke affects millions of adults and children... Read more

Nuclear medicine

view channel
Image: Symbia Evo Excel combines excellent SPECT image resolution and detector sensitivity with a small room size requirement thus designed to fit into almost any existing nuclear medicine exam room (Photo courtesy of Siemens Healthcare).

New SPECT System Scans Virtually Every Patient and Is Designed to Fit into Most Nuclear Medicine Exam Rooms

A new single photon emission computed tomography (SPECT) system combines image resolution and detector sensitivity with the smallest room size requirement in its class. Siemens Healthcare’s (Erlangen,... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Imaging IT

view channel
Image: The Coronis Uniti diagnostic image display supports PACS and breast imaging in color and grayscale (Photo courtesy of Barco).

Diagnostic Image Display Designed for Both PACS and Breast Imaging

The first diagnostic display designed for both picture archiving and communication systems (PACS) and breast imaging provides excellent image quality, inventive productivity features, and a focus on ergonomics.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.