We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Tools Provides Confidence in Cardiac Care

By MedImaging International staff writers
Posted on 20 Sep 2015
Print article
Image: Cardiac model used in the Philips HeartModelA.I (Photo courtesy of Royal Philips).
Image: Cardiac model used in the Philips HeartModelA.I (Photo courtesy of Royal Philips).
A new anatomically intelligent ultrasound (AIUS) tool brings advanced quantification, automated 3-D views, and robust reproducibility to echocardiology.

The Royal Philips (Amsterdam, The Netherlands) HeartModelA.I is designed to automatically detect, segment, and quantify the left atrium (LA) and left ventricle (LV) volume and ejection fraction (EF). The model-based segmentation algorithm is based on prior knowledge of the general structural layout of the heart, how heart location varies within an image, the ways in which the heart shape varies, and the ways in which the heart is imaged using ultrasound. This prior information is what enables the HeartModelA.I. to adapt the model to hearts typically seen in a clinical scenario.

Clinically, HeartModelA.I is designed to detect two LV endocardial borders, at end-diastole (ED) and end-systole (ES). The two endocardial borders mark the inner and outer extents of the myocardial tissue at the blood-tissue interface and at the interface of the compacted myocardium. By thus segmenting the inner and outer extents of the myocardial tissue, an intermediate location can be more robustly defined across a wide range of heart shapes and image quality 3-6 times faster than current methods that are based on using 3D measurements.

When editing of the borders is necessary, the user has two editing options available - a global or regional edit. The global edit consists of adjusting the ED or ES slider value, or relative location of the single LV endocardial border relative to the inner and outer borders that were automatically detected by the algorithm. Regional editing involves adjusting the border on a more localized basis via control points placed along the contour, allows the user to use the application even on hearts exhibiting a very unique or irregular shape.

“Health systems are constantly looking for solutions to provide the most efficient and effective way to help clinicians make confident diagnosis,” said Vitor Rocha, CEO of ultrasound at Philips. “Conventional echocardiograms can be very time consuming. By combining AIUS with the power of HeartModelA.I, we’re able to deliver technology that helps simplify a complicated exam and makes it more reproducible.”

Ultrasound provides a cost-effective, robust imaging modality to measure cardiac function without radiation exposure. Typically, two dimensional (2D) echocardiographic images are used to measure LA or LV volume and EF output, but these measurements rely on making assumptions about the 3-D shape of the heart based only on what is seen in the 2-D image, an assumption that can significantly impact the measurements.

Related Links:

Royal Philips


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Wireless Handheld Ultrasound System
TE Air
PACS Workstation
CHILI Web Viewer
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Print article

Channels

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.