Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Real-Time Neuroimaging Technology Offers Glimpse Inside the Cell

By Medimaging International staff writers
Posted on 08 May 2014
Image: The micrograph shows a peripheral nerve, with the neuromuscular endplates stained in red. The nerve-cell mitochondria were imaged with a fluorescent redox sensor (green in the cytoplasm, yellow at the endplates) (Photo courtesy of M. Kerschensteiner and T. Misgeld).
Image: The micrograph shows a peripheral nerve, with the neuromuscular endplates stained in red. The nerve-cell mitochondria were imaged with a fluorescent redox sensor (green in the cytoplasm, yellow at the endplates) (Photo courtesy of M. Kerschensteiner and T. Misgeld).
Cutting-edge imaging technology provides insights into the role of redox signaling and reactive oxygen species in living neurons, in real time. German scientists have developed a new optical microscopy technique that provides insights into the role of oxidative stress in damaged as well as healthy nervous systems.

The study, performed by researchers from Technische Universität München (TUM; Germany) and the Ludwig-Maximilians-Universität München (LMU; Germany), was described in the April 2014 issue of the journal Nature Medicine.

Reactive oxygen species (ROS) are important intracellular signaling molecules, but their course of action is complicated: In low concentrations they control key aspects of cellular function and behavior, while at high concentrations they can cause oxidative stress, which damages DNA, organelles, and membranes. To examine how redox signaling unfolds in single cells and organelles in real-time, an innovative optical microscopy technique has been developed cooperatively by the teams of LMU Prof. Martin Kerschensteiner and TUM Prof. Thomas Misgeld, both investigators of the Munich Cluster for Systems Neurology (SyNergy).

“Our new optical approach allows us to visualize the redox state of important cellular organelles, mitochondria, in real time in living tissue,” Prof. Kerschensteiner said. In earlier studies, the investigators had obtained validation that oxidative damage of mitochondria might contribute to the destruction of axons in inflammatory diseases such as multiple sclerosis.

The new technology allows the scientists to monitor the oxidation states of individual mitochondria with high spatial and temporal resolution. Prof. Kerschensteiner explained the incentive behind the development of the technique. “Redox signals have important physiological functions, but can also cause damage, for example when present in high concentrations around immune cells.”

The scientists used redox-sensitive variants of the green fluorescent protein (GFP) as visualization tools. “By combining these with other biosensors and vital dyes, we were able to establish an approach that permits us to simultaneously monitor redox signals together with mitochondrial calcium currents, as well as changes in the electrical potential and the proton (pH) gradient across the mitochondrial membrane,” stated Prof. Misgeld.

The researchers have applied the technique to two experimental models, and have arrived at some unexpected insights. On the one hand, they have been able for the first time to study redox signal induction in response to neural damage—in this instance, spinal cord injury—in the mammalian nervous system. The observations revealed that severance of an axon results in a wave of oxidation of the mitochondria, which begins at the site of damage and is propagated along the fiber. Furthermore, a flood of calcium at the site of axonal resection was shown to be needed for the subsequent functional damage to mitochondria.

Quite possibly the most unexpected outcome of the new study was that the study’s first author, graduate student Michael Breckwoldt, was able to image for the first time, spontaneous contractions of mitochondria that are accompanied by a rapid shift in the redox state of the organelle.

Prof. Misgeld concluded, “This appears to be a fail-safe system that is activated in response to stress and temporarily attenuates mitochondrial activity. Under pathological conditions, the contractions are more prolonged and may become irreversible, and this can ultimately result in irreparable damage to the nerve process.”

Related Links:

Technische Universität München
Ludwig-Maximilians-Universität München



view channel
Image: Multimodal CT images obtained 2 hours 18 minutes after symptom onset in an 87-year-old woman with an NIH Stroke Scale of 15 and left hemisphere symptoms (Photo courtesy of Radiology 2015:257;2;510-520, and RSNA 2015).

Faster and Simpler Treatment for Stroke Patients Using Multiphase CT

The results of a new study show that multiphase Computed Tomography (CT) angiography brain-imaging could enable clinicians to treat Acute Ischemic Stroke (AIS) patients faster, and better, potentially saving lives.... Read more


view channel

Preventing Unnecessary Breast Biopsies Using MRI

The results of a new study have shown that a new Magnetic Resonance (MR) breast imaging technique could prevent unnecessary biopsies. The new technique, called Diffusion-Weighted Imaging with Background Suppression Magnetic Resonance Mammography (DWIBS-MRM), can be used to assess the diffusion of water molecules within tissue.... Read more

Nuclear medicine

view channel
Image: The whole body of a rat can be imaged for blood clots with one PET scan, overlaid here on an MRI image, using the FBP8 probe. The arrow points to a blood clot (Photo courtesy of the American Chemical Society).

Single PET Scan Could Replace Multiple Modalities in Detecting Blood Clots

Researchers have presented an experimental technique that could be used to discover blood clots using a single, fast, whole-body scan, at the 250th National Meeting and Exposition of the American Chemical... Read more

Imaging IT

view channel

Carestream Updates Healthcare IT Platform

Carestream has released updates for an advanced Internet Technology (IT) healthcare platform at the Röntgenveckan Radiology congress in Malmo (Sweden). The IT platform facilitates collaboration by enabling sharing of critical patient information such as Radiology images, videos, reports, and services with groups outside... Read more

Industry News

view channel

Viztek Acquired by Konica Minolta to Complement End-to-End Healthcare IT Solutions

Konica Minolta Medical Imaging (Wayne, NJ, USA), a leading medical diagnostic primary imaging provider, has announced the completed acquisition of Viztek (Garner, NC, USA), a company providing Healthcare Internet Technology solutions. The acquisition enhances Konica Minolta’s end-to-end healthcare IT capabilities, including... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.