Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
Demo Company
Ampronix

Real-Time Neuroimaging Technology Offers Glimpse Inside the Cell

By Medimaging International staff writers
Posted on 08 May 2014
Image: The micrograph shows a peripheral nerve, with the neuromuscular endplates stained in red. The nerve-cell mitochondria were imaged with a fluorescent redox sensor (green in the cytoplasm, yellow at the endplates) (Photo courtesy of M. Kerschensteiner and T. Misgeld).
Image: The micrograph shows a peripheral nerve, with the neuromuscular endplates stained in red. The nerve-cell mitochondria were imaged with a fluorescent redox sensor (green in the cytoplasm, yellow at the endplates) (Photo courtesy of M. Kerschensteiner and T. Misgeld).
Cutting-edge imaging technology provides insights into the role of redox signaling and reactive oxygen species in living neurons, in real time. German scientists have developed a new optical microscopy technique that provides insights into the role of oxidative stress in damaged as well as healthy nervous systems.

The study, performed by researchers from Technische Universität München (TUM; Germany) and the Ludwig-Maximilians-Universität München (LMU; Germany), was described in the April 2014 issue of the journal Nature Medicine.

Reactive oxygen species (ROS) are important intracellular signaling molecules, but their course of action is complicated: In low concentrations they control key aspects of cellular function and behavior, while at high concentrations they can cause oxidative stress, which damages DNA, organelles, and membranes. To examine how redox signaling unfolds in single cells and organelles in real-time, an innovative optical microscopy technique has been developed cooperatively by the teams of LMU Prof. Martin Kerschensteiner and TUM Prof. Thomas Misgeld, both investigators of the Munich Cluster for Systems Neurology (SyNergy).

“Our new optical approach allows us to visualize the redox state of important cellular organelles, mitochondria, in real time in living tissue,” Prof. Kerschensteiner said. In earlier studies, the investigators had obtained validation that oxidative damage of mitochondria might contribute to the destruction of axons in inflammatory diseases such as multiple sclerosis.

The new technology allows the scientists to monitor the oxidation states of individual mitochondria with high spatial and temporal resolution. Prof. Kerschensteiner explained the incentive behind the development of the technique. “Redox signals have important physiological functions, but can also cause damage, for example when present in high concentrations around immune cells.”

The scientists used redox-sensitive variants of the green fluorescent protein (GFP) as visualization tools. “By combining these with other biosensors and vital dyes, we were able to establish an approach that permits us to simultaneously monitor redox signals together with mitochondrial calcium currents, as well as changes in the electrical potential and the proton (pH) gradient across the mitochondrial membrane,” stated Prof. Misgeld.

The researchers have applied the technique to two experimental models, and have arrived at some unexpected insights. On the one hand, they have been able for the first time to study redox signal induction in response to neural damage—in this instance, spinal cord injury—in the mammalian nervous system. The observations revealed that severance of an axon results in a wave of oxidation of the mitochondria, which begins at the site of damage and is propagated along the fiber. Furthermore, a flood of calcium at the site of axonal resection was shown to be needed for the subsequent functional damage to mitochondria.

Quite possibly the most unexpected outcome of the new study was that the study’s first author, graduate student Michael Breckwoldt, was able to image for the first time, spontaneous contractions of mitochondria that are accompanied by a rapid shift in the redox state of the organelle.

Prof. Misgeld concluded, “This appears to be a fail-safe system that is activated in response to stress and temporarily attenuates mitochondrial activity. Under pathological conditions, the contractions are more prolonged and may become irreversible, and this can ultimately result in irreparable damage to the nerve process.”

Related Links:

Technische Universität München
Ludwig-Maximilians-Universität München



Channels

Radiography

view channel
Image: 3-D image of a fly using a new X-ray Imaging Technique (Photo courtesy of Nature Communications, and LMU).

Pioneering Technique for Imaging Biological Tissues Developed

Researchers have developed a novel X-ray imaging system that uses a compact X-ray source generated by ultra-short, high-power laser pulses, combined with phase-contrast X-ray tomography, to provide detailed... Read more

MRI

view channel
Image: Siemens Healthcare MAGNETOM Avanto 1.5-T MRI Scanner (Photo courtesy of Siemens Healthcare).

MRI Technique Allows for “Fingerprinting” of Tissues and Diseases for Faster Diagnoses

New findings published in the journal Nature indicate that a new Magnetic Resonance Imaging (MRI) technique, called Magnetic Resonance Fingerprinting (MRF), could provide much more information with each... Read more

Ultrasound

view channel

New Ultrasound System Enhances Patient Care and User Experience

A new ultrasound system with innovative specialized transducers and improved image quality, intended for general imaging, women’s health, and shared service applications, has been announced. The system features improved accuracy, performance, assessment tools, advanced automation, and an enhanced user experience.... Read more

Nuclear medicine

view channel

Clinical Study Shows Added Value of Amyloid PET Imaging in the Diagnosis and Treatment of Dementia

Early-onset dementia patients could benefit from a new PET imaging agent developed by a major medical imaging vendor. The results of a clinical study showing the effectiveness of the amyloid PET imaging agent were presented at the Alzheimer’s Association International Conference (AAIC 2015) in Washington DC (USA).... Read more

Imaging IT

view channel
Image: Siemens Healthcare’s syngo.via MM Oncology facilitates compliance by clinicians to British Thoracic Society guidelines for the investigation and management of pulmonary nodules.(Photo courtesy of Siemens Healthcare).

Oncology Software Update Compliant with New BTS Guidelines

A key diagnostic imaging vendor has announced that it has modified its oncology software solution to ensure compliance with new British Thoracic Society (BTS) guidelines for lung nodule screening.... Read more

Industry News

view channel

Report Forecasts Growth of Global Computed Tomography Sector to USD 6 billion by 2019

A new report has been published that analyzes global Computed Tomography (CT) market shares, strategies, and forecasts, for the years 2013 to 2018. The report entitled “Global Computed Tomography (CT) Market Shares, Strategies, and Forecasts, 2013 to 2018,” predicts that global CT markets will continue to grow moderately... Read more
 

Events

11 Sep 2015 - 12 Sep 2015
19 Sep 2015 - 24 Sep 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.