Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Ampronix
Schiller

Near Infrared-2 Imaging Technology Developed for Visualizing Blood Flow

By Medimaging International staff writers
Posted on 26 Dec 2012
Image: These images of a mouse's blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (top) and Stanford's new NIR-2 technique (bottom) (Photo courtesy of Stanford University).
Image: These images of a mouse's blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (top) and Stanford's new NIR-2 technique (bottom) (Photo courtesy of Stanford University).
Investigators have developed a fluorescence imaging technique that provides a view of the pulsing blood vessels of living animals with never-before-seen clarity. Compared with traditional imaging technologies, the sharpness enhancement is similar to cleaning fog off eyeglasses.

The technique, called near infrared-2 imaging (NIR-2), involves first injecting water-soluble carbon nanotubes into the live subject’s bloodstream. The researchers then shine a laser (its light is in the near-infrared range, a wavelength of about 0.8 micrometers) over the subject—in this instance, a mouse. The light causes the specially engineered nanotubes to fluoresce at a longer wavelength of 1-1.4 micrometers, which is then detected to determine the blood vessels’ structure.

That the nanotubes fluoresce at considerably longer wavelengths than conventional imaging techniques is vital in achieving the amazingly sharp images of the tiny blood vessels: longer wavelength light scatters less, and thereby generates clearer images of the vessels. Another advantage of detecting such long wavelength light is that the detector registers less background noise since the body does not produce autofluorescence in this wavelength range.

In addition to providing fine details, the technique, developed by Stanford University (Stanford, CA, USA) scientists Hongjie Dai, PhD, professor of chemistry; John Cooke, MD, PhD, professor of cardiovascular medicine; and Ngan Huang, PhD, acting assistant professor of cardiothoracic surgery—has a fast image acquisition rate, allowing researchers to measure blood flow in near real time.

The research was published online November 18, 2012, in the journal Nature Medicine. The ability to obtain both blood flow data and blood vessel clarity was not earlier possible, and will be especially useful in studying animal models of arterial disease, such as how blood flow is affected by the arterial blockages and constrictions that cause, among other things, heart attacks and stroke. “For medical research, it’s a very nice tool for looking at features in small animals,” Prof. Dai said. “It will help us better understand some vasculature diseases and how they respond to therapy, and how we might devise better treatments.”

Because NIR-2 can only penetrate 1 cm, at most, into the body, it will not replace other imaging techniques for humans, but it will be a powerful method for studying animal models by replacing or complementing computed tomography (CT), X-ray, magnetic resonance imaging (MRI), and laser Doppler techniques.

The next phase of the research, and one that will make the technology more easily accepted for use in humans, is to study alternative fluorescent molecules, according to Prof. Dai. “We’d like to find something smaller than the carbon nanotubes but that emit light at the same long wavelength, so that they can be easily excreted from the body and we can eliminate any toxicity concerns.”

Related Links:

Stanford University



Channels

Radiography

view channel
Image: The Somatom Scope CT system’s biopsy and intervention modes for CT-guided intervention enhance precision and streamline workflow (Photo courtesy of Siemens Healthcare).

16-Slice CT System’s Technology Extends Operational Lifetime by Minimizing Wear and Tear

A new 16-slice computed tomography (CT) system is designed for clinical routine and is available in two power configurations to better meet clinical, workflow requirements. Siemens Healthcare (Erlangen,... Read more

MRI

view channel

fMRI and Circuitry Mapping Shows Dyslexic Readers Have Disrupted Brain Network

Dyslexia, the most typically diagnosed learning disability in the United States, is a neurologic reading disability that occurs when the regions of the brain that process written language do not function normally. The use of noninvasive functional neuroimaging approaches has helped characterize how brain activity is disrupted... Read more

Ultrasound

view channel
Image: Leading German anesthetists Drs. Wolf Armbruster, Rüdiger Eichholz, and Thomas Notheisen have collaborated to develop the Armbruster Eichholz Notheisen (AEN) training concept for ultrasound-guided regional anesthesia (Photo courtesy of Management and Krankenhaus).

Point-of-Care Ultrasound Training Program Established for Regional Anesthesiologists

Regional anesthesia specialists have developed an innovative ultrasound training program. Leading German anesthetists Drs. Wolf Armbruster, Rüdiger Eichholz, and Thomas Notheisen have collaborated to... Read more

Nuclear medicine

view channel
Image: The ProBeam system treatment room (Photo courtesy of Varian Medical Systems).

Five Proton Therapy Treatment Rooms Plus System Upgrade Deployed at Scripps Proton Therapy Center

An upgrade of a proton system will improve workflow at a US proton therapy center, enabling the use of the fixed-beam treatment rooms as well as more diverse patient-positioning devices.... Read more

Imaging IT

view channel

Database Tool Centralizes Imaging Workflows into One Platform to Improve Patient Care, Cut Costs

A single database application has been developed to centralize imaging workflows into one easy-to-use platform. It is an intuitive approach that scales as the healthcare provider’s needs grow. With consolidated software and interfaces, users can considerable reduce manual data entry, errors, and down time.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.