Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
Ampronix
ElsMed

Near Infrared-2 Imaging Technology Developed for Visualizing Blood Flow

By Medimaging International staff writers
Posted on 26 Dec 2012
Image: These images of a mouse's blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (top) and Stanford's new NIR-2 technique (bottom) (Photo courtesy of Stanford University).
Image: These images of a mouse's blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (top) and Stanford's new NIR-2 technique (bottom) (Photo courtesy of Stanford University).
Investigators have developed a fluorescence imaging technique that provides a view of the pulsing blood vessels of living animals with never-before-seen clarity. Compared with traditional imaging technologies, the sharpness enhancement is similar to cleaning fog off eyeglasses.

The technique, called near infrared-2 imaging (NIR-2), involves first injecting water-soluble carbon nanotubes into the live subject’s bloodstream. The researchers then shine a laser (its light is in the near-infrared range, a wavelength of about 0.8 micrometers) over the subject—in this instance, a mouse. The light causes the specially engineered nanotubes to fluoresce at a longer wavelength of 1-1.4 micrometers, which is then detected to determine the blood vessels’ structure.

That the nanotubes fluoresce at considerably longer wavelengths than conventional imaging techniques is vital in achieving the amazingly sharp images of the tiny blood vessels: longer wavelength light scatters less, and thereby generates clearer images of the vessels. Another advantage of detecting such long wavelength light is that the detector registers less background noise since the body does not produce autofluorescence in this wavelength range.

In addition to providing fine details, the technique, developed by Stanford University (Stanford, CA, USA) scientists Hongjie Dai, PhD, professor of chemistry; John Cooke, MD, PhD, professor of cardiovascular medicine; and Ngan Huang, PhD, acting assistant professor of cardiothoracic surgery—has a fast image acquisition rate, allowing researchers to measure blood flow in near real time.

The research was published online November 18, 2012, in the journal Nature Medicine. The ability to obtain both blood flow data and blood vessel clarity was not earlier possible, and will be especially useful in studying animal models of arterial disease, such as how blood flow is affected by the arterial blockages and constrictions that cause, among other things, heart attacks and stroke. “For medical research, it’s a very nice tool for looking at features in small animals,” Prof. Dai said. “It will help us better understand some vasculature diseases and how they respond to therapy, and how we might devise better treatments.”

Because NIR-2 can only penetrate 1 cm, at most, into the body, it will not replace other imaging techniques for humans, but it will be a powerful method for studying animal models by replacing or complementing computed tomography (CT), X-ray, magnetic resonance imaging (MRI), and laser Doppler techniques.

The next phase of the research, and one that will make the technology more easily accepted for use in humans, is to study alternative fluorescent molecules, according to Prof. Dai. “We’d like to find something smaller than the carbon nanotubes but that emit light at the same long wavelength, so that they can be easily excreted from the body and we can eliminate any toxicity concerns.”

Related Links:

Stanford University



Channels

Radiography

view channel
Image: GE Healthcare’s Revolution EVO CT system (Photo courtesy of GE Healthcare).

CT System Improves Outcomes While Supporting Wide Range of Patients

New computed tomography (CT) technology can improve patient outcomes while cutting the cost of providing care. Revolution EVO, developed by GE Healthcare (Chalfont St. Giles, UK), is designed to support... Read more

MRI

view channel
Image: In a preterm infant’s brain, an MRI scan can reveal abnormalities that were undetected by previous methods. The scans on the left show normal gray matter, while those on the right show abnormal gray matter (Photo courtesy of Washington University in St. Louis).

MRI Tracks Infant Brain Growth in First Months of Life

For the first time, researchers have used magnetic resonance imaging (MRI) of the newborn brain to calculate the volume of multiple brain regions and to map out regional growth trajectories during the... Read more

Ultrasound

view channel
Image: UAMS researcher William Culp, MD, (right), and Doug Wilson of UALR (left) have developed a device to treat stroke (Photo courtesy of UAMS/UALR Office of Communications).

Clot-Buster Ultrasound Device May Become Best Treatment Option for Stroke Patients

A new device is being developed to treat stroke more effectively. The new technology fits on the head similar to a halo and delivers therapy to rapidly bust clots that cause stroke. The device was developed... Read more

Nuclear medicine

view channel

PET Imaging Reveals Brain Benefits from Weight Loss After Bariatric Surgery

Imaging studies revealed that weight loss surgery has been found to suppress changes in brain metabolism associated with obesity and improve cognitive function involved in planning, strategizing, and organizing. Therefore, researchers have hypothesized that a specific surgical procedure could reduce risk of Alzheimer’s... Read more

Imaging IT

view channel
Image: An X-ray using the ClearRead bone suppression software technology (Photo courtesy of Riverain Technologies).

Bone Suppression Software Used to Optimize Diagnostic Capability of X-Ray Systems

Clinicians are gathering important information from the most routine imaging exam, the chest X-ray, by using advanced software that enhances X-ray images captured by the equipment they already have or... Read more

Industry News

view channel

Acquisition Includes Radiation Simulation Software for Radiotherapy Applications

Varian Medical Systems, Inc. (Palo Alto, CA, USA) has acquired certain assets of Transpire, Inc. (Gig Harbor, WA, USA) including the Acuros dose calculation software, which has been incorporated into Varian’s BrachyVision and Eclipse treatment planning software systems. The acquisition closed at the end of July 2014.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.