We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Self-Powered X-Ray Detector Could Revolutionize Imaging

By MedImaging International staff writers
Posted on 22 Apr 2020
Print article
Image: Schematic of a perovskite thin film X-ray photon detector (Photo courtesy of Los Alamos National Laboratory)
Image: Schematic of a perovskite thin film X-ray photon detector (Photo courtesy of Los Alamos National Laboratory)
A new generation of x-ray detectors based on a thin film of the mineral perovskite could transform future x-ray imaging technologies, according to a new study.

Developed at Los Alamos National Laboratory (LANL; NM, USA) and Argonne National Laboratory (ANL; Lemont, IL, USA), the thin-film x-ray detectors are comprised of highly crystalline, Ruddlesden-Popper phase layered perovskites that are over a hundred times more sensitive than conventional silicon-based detectors. Also, as the perovskite detectors are photocurrent devices, they do not require an outside power source to operate; instead, they work by generating substantial x-ray photon–induced open-circuit voltages in response to bombardment by X-ray beams.

The Perovskite films can be deposited on surfaces by spraying solutions that cure and leave thin layers of the material behind. As a result, the thin-layer detectors will be much easier and cheaper to produce than silicon-based detectors, which require high-temperature metal deposition under strict vacuum conditions. The lower-energy, increased-resolution detectors could also revolutionize security scanners and imaging in high-energy research facilities, for example those that use synchrotron light sources. The study was published on April 10, 2020, in Science Advances.

“The perovskite material at the heart of our detector prototype can be produced with low-cost fabrication techniques. Potentially, we could use ink-jet types of systems to print large scale detectors,” said lead author Hsinhan (Dave) Tsai, PhD, of the LANL department of materials physics and applications. “The result is a cost-effective, highly sensitive, and self-powered detector that could radically improve existing X-ray detectors, and potentially lead to a host of unforeseen applications.”

Perovskite, named after Russian mineralogist Lev Perovski (1792–1856), is a mineral that was discovered in the Ural Mountains by Gustav Rose in 1839. It is composed mainly of calcium titanate, and is rich in heavy elements, such as lead and iodine. As a result, X-rays that easily pass through silicon undetected are more readily absorbed, and detected, in perovskite.

Related Links:
Los Alamos National Laboratory
Argonne National Laboratory


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
Thyroid Shield
Standard Thyroid Shield

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.