We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Rivals Radiologists in Intracranial Hemorrhage Detection

By MedImaging International staff writers
Posted on 04 Nov 2019
Print article
Image: Typical brain scan a radiologist would see (L), and a subarachnoid hemorrhage highlighted by PatchFCN (R) (Photo courtesy of UCSF).
Image: Typical brain scan a radiologist would see (L), and a subarachnoid hemorrhage highlighted by PatchFCN (R) (Photo courtesy of UCSF).
A new study shows that artificial intelligence (AI) convolutional neural networks (CNNs) can achieve accuracy levels comparable to those of highly trained radiologists.

Developed by researchers at the University of California, San Francisco (UCSF; USA), and the University of California Berkeley (UCB; USA), the patch-based fully convolutional network (PatchFCN) works by splitting a computed tomography (CT) scan into smaller patches in order to improve the detection rate of acute intracranial hemorrhage (ICH) on head CT scans. According to the researchers, segmentation offers many advantages, including better interpretability and quantifiable metrics for disease prognosis. In layman terms, hemorrhage is thus defined as “stuff” (e.g. water) rather than “things” (e.g. a car), due to its fluid nature.

Developed using 4,396 head CT scans as a learning model, PatchFCN performance was compared to that of four American Board of Radiology (ABR) certified radiologists on a test set of 200 randomly selected head CTs. The model demonstrated an average precision of 99% for detecting hemorrhages, the highest classification accuracy to date. In addition, PatchFCN provided a detailed tracing of each hemorrhage, highlighting abnormalities directly on the CT itself, helping neurosurgeons to visually confirm the locations of hemorrhages and to judge the need and the approach for surgical intervention. The study was published on October 21, 2019, in PNAS.

“Using a strong pixel-level supervision approach and a relatively small training dataset, we demonstrate an end-to-end network that performs joint classification and segmentation. It demonstrates the highest classification accuracy to date, compared to other deep learning approaches, and also concurrently localizes these abnormalities,” concluded lead author Weicheng Kuo, PhD, of UCB. “We demonstrate that it identifies many abnormalities missed by experts; in addition, we demonstrate promising results for multiclass hemorrhage segmentation, while preserving accurate detection at the examination level.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
University of California, San Francisco
University of California Berkeley

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
DR Flat Panel Detector
1500L
New
X-Ray Detector
FDR-D-EVO III
New
Brachytherapy Planning System
Oncentra Brachy

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.