We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiosensitizer Molecule Enhances RT in Hypoxic Tumor Cores

By MedImaging International staff writers
Posted on 21 May 2019
Print article
Image: The novel nanoparticle enhances RT killing of cancer cells in the low-oxygen tumor core (Photo courtesy of Wenpei Fan, LOMIN Laboratory, NIBIB).
Image: The novel nanoparticle enhances RT killing of cancer cells in the low-oxygen tumor core (Photo courtesy of Wenpei Fan, LOMIN Laboratory, NIBIB).
A novel nanoparticle that generates radiation-induced reactive oxygen species (ROS) can dramatically increase the success of radiation therapy (RT), claims a new study.

Developed, among others, at the National Institute of Biomedical Imaging and Bioengineering (NIBIB; Bethesda, MD, USA), Zhejiang University (Hangzhou, China), the Chinese Academy of Sciences (Shenyang, China), the radiosensitizer molecule is made of hollow mesoporous organosilica nanoparticles (HMONs) that contain pores with a diameter of 2-50 nanometers. The HMONs are loaded with two different compounds; one creates ROS in an oxygen-rich environment when hit with radiation. The other creates ROS when hit with radiation in the hypoxic core of the tumor.

The loaded nanoparticles were tested in a human glioblastoma cell line, revealing that the combination of nanoparticles and radiation shredded the DNA of the glioblastoma cells, compared with nanoparticles alone or radiation alone. Tests showed that the nanoparticles generated extremely reactive oxygen free radicals by peroxy bond cleavage when exposed to radiation in both normoxic and hypoxic conditions, confirming that the system worked as designed. The study was published in the March 2019 edition of Nature Communications.

“When hit with radiation the particle produces destructive oxygen free radicals in normal and low oxygen parts of the tumor. Carbon monoxide gas, which is toxic to tumors, is further created when the oxygen free radicals interact with the compound FeCO,” said lead author Wenpei Fan, PhD, of the NIBIB Laboratory of Molecular Imaging and Nanomedicine (LOMIN). “We believe this therapy approach offers new possibilities for enhanced X-ray-activated treatment for future deep-cancer therapy. The next logical step is to optimize the structure and scale up nanoparticle synthesis to allow clinical translation of this type of radiotherapy enhancement.”

ROS are chemically reactive chemical species containing oxygen, such asperoxides, superoxide, hydroxyl radical, and singlet oxygen. In a biological context, ROS are formed as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. However, during times of environmental stress, such as ultraviolet (UV) or heat exposure, ROS levels can increase dramatically, resulting in oxidative stress and significant damage to cell structures.

Related Links:
National Institute of Biomedical Imaging and Bioengineering
Zhejiang University
Chinese Academy of Sciences

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
New
Computed Tomography (CT) Scanner
Aquilion Serve SP
New
Digital Radiography Generator
meX+20BT lite

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.