We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Accurately Detects Fractures on X-Rays

By MedImaging International staff writers
Posted on 23 Dec 2021
Print article
Illustration
Illustration

A new study has found that artificial intelligence (AI) can help physicians in interpreting X-rays after an injury and suspected fracture.

The AI algorithm (AI BoneView) developed by researchers at the Boston University School of Medicine (Boston, MA, USA) was trained on a very large number of X-rays from multiple institutions to detect fractures of the limbs, pelvis, torso and lumbar spine and rib cage. Expert human readers (musculoskeletal radiologists, who are sub-specialized radiology doctors after receiving focused training on reading bone X-rays) defined the gold standard in this study and compared the performance of human readers with and without AI assistance.

Emergency room and urgent care clinics are typically busy and patients often have to wait many hours before they can be seen, evaluated and receive treatment. Waiting for X-rays to be interpreted by radiologists can contribute to this long wait time because radiologists often read X-rays for a large number of patients. Fracture interpretation errors represents up to 24% of harmful diagnostic errors seen in the emergency department. Furthermore, inconsistencies in radiographic diagnosis of fractures are more common during the evening and overnight hours (5 p.m. to 3 a.m.), likely related to non-expert reading and fatigue.

In the study, a variety of readers were used to simulate real life scenario, including radiologists, orthopedic surgeons, emergency physicians and physician assistants, rheumatologists, and family physicians, all of whom read X-rays in real clinical practice to diagnose fractures in their patients. Each reader’s diagnostic accuracy of fractures, with and without AI assistance, were compared against the gold standard. They also assessed the diagnostic performance of AI alone against the gold standard. AI assistance helped reduce missed fractures by 29% and increased readers’ sensitivity by 16%, and by 30% for exams with more than one fracture, while improving specificity by 5%. The researchers believe that AI can be a powerful tool to help radiologists and other physicians to improve diagnostic performance and increase efficiency, while potentially improving patient experience at the time of hospital or clinic visit.

“Our AI algorithm can quickly and automatically detect X-rays that are positive for fractures and flag those studies in the system so that radiologists can prioritize reading X-rays with positive fractures. The system also highlights regions of interest with bounding boxes around areas where fractures are suspected. This can potentially contribute to less waiting time at the time of hospital or clinic visit before patients can get a positive diagnosis of fracture,” explained corresponding Ali Guermazi, MD, PhD, chief of radiology at VA Boston Healthcare System and Professor of Radiology & Medicine at BUSM.

“Our study was focused on fracture diagnosis, but similar concept can be applied to other diseases and disorders. Our ongoing research interest is to how best to utilize AI to help human healthcare providers to improve patient care, rather than making AI replace human healthcare providers. Our study showed one such example,” he added.

Related Links:
Boston University School of Medicine 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Needle Guide
Ultra-Pro II
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
New
Digital Radiography Generator
meX+20BT lite

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.