We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Personalized Shields Reduce Radiotherapy Tissue Injury

By MedImaging International staff writers
Posted on 12 May 2021
Print article
Image: Clinical workflow for integrating personalized radioprotectant devices in RT (Photo courtesy of BWH)
Image: Clinical workflow for integrating personalized radioprotectant devices in RT (Photo courtesy of BWH)
3D-printed devices derived from CT images can shield healthy structures in the gastrointestinal (GI) tract during radiation therapy (RT) procedures, according to a new study.

Developed at Brigham and Women's Hospital (BWH; Boston, AM, USA), the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), Massachusetts General Hospital (MGH; Boston, USA), and other institutions, the personalized shields were designed and contoured on diagnostic CT scans using the open-source 3D Slicer software app. The contours were then generated into 3D models, and the personalized radioprotective shields were 3D-printed with high atomic number materials to block gamma and x-rays and reduce radiation backscatter.

In initial testing on rats and pigs, the researchers found that the devices could protect healthy tissue in the mouth and rectum in rats and were feasible and reproducible in pigs. In human simulation studies, dosimetric modeling showed a 30% dose reduction to the normal buccal mucosa in maxillofacial cancer patients, and a 15.2% dose reduction in the rectum for prostate cancer patients. They also suggest that the new shields are more cost-effective than a hydrogel rectal spacer. The study was published on April 27, 2021, in Advanced Science.

“Personalized 3D‐printed radioprotectant devices may have great potential to reduce radiation toxicity in clinical settings where radiation is used, including neoadjuvant and adjuvant therapy, curative treatment, and palliative treatments,” concluded lead author James Byrne, PhD, of BWH, and colleagues. “This personalized approach could be applicable to a variety of cancers that respond to radiation therapy, including head and neck, lung, prostate, anal, skin, and gynecological cancers, sarcomas, and lymphomas.”

Most cancer patients undergoing RT will develop colateral tissue injury as a result of treatment. The toxicities are dependent upon the location of treatment, with the most common toxicities involving the oral cavity and gastrointestinal (GI) tract in the forms of oral mucositis, esophagitis, and proctitis. This injury may lead to severe morbidity and, ultimately, treatment breaks or discontinuation that adversely impact tumor cure rates.

Related Links:
Brigham and Women's Hospital
Massachusetts Institute of Technology
Massachusetts General Hospital


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
KC20
Portable Radiology System
DRAGON ELITE & CLASSIC
DR Flat Panel Detector
1500L

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.